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The emerging integrated sensing and communication (ISAC) technologies show great potential for 5G NR,
offering a new wireless-sensing infrastructure paradigm. Users can benefit from pervasive sensing applications
in various scenarios without communication penalties. Given the diverse demands for sensing resources
across different sensing tasks, elastic resource scheduling becomes crucial, particularly when resources are
constrained. However, existing approaches often treat users equally, limiting the applicability in dealing with
diverse sensing tasks in the real world. In this paper, we introduce ELASE, a pioneering sensing technique that
enables elastic and prompt scheduling of sensing resources. At the core of ELASE is the exploration of the
user’s state to precisely determine the sensing resource requirements and schedule resources accordingly. We
build the first model for matching sensing resources with sensing demands, and further propose a predictive
scheduling scheme to eliminate delays by leveraging the 5G virtualized radio access network (VRAN). ELASE has
been implemented on a CPU-based 5G vRAN and commercial 5G user equipments. We conduct experiments to
evaluate the performance of ELASE under different settings. The results demonstrate that ELASE outperforms
the non-scheduling scheme, with a 34% reduction in trajectory tracking error and a 92% decrease in resource
allocation error.
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1 Introduction

Due to the contact-less, privacy-protection, and even battery-free features, wireless sensing tech-
nologies have achieved great progress in the past few years. The mainstream radio frequency(RF)
based wireless sensing has exploited wireless signals at various frequencies, ranging from LoRa
[16, 43], RFID [22, 24], Wi-Fi[14, 31, 32, 48, 51-53] to mmWave [15, 49].
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Fig. 1. Elastic Sensing with ELASE.

Although these works have demonstrated the feasibility of wireless-sensing applications, the
method of deploying specific devices prohibits widespread popularization. The concept of ISAC
proposed in mobile networks can solve the problem by building sensing system upon the pervasive
base stations [19, 39]. Despite the pervasiveness, another useful feature of mobile networks is
the centralized RF resource scheduling. Wi-Fi and backscatter networks [25, 26] widely adopt
mechanisms like the contention-based CSMA/CA and the deep coupling between preamble signals
and data packets. This will produce an unstable sampling rate of the sensing signals due to either
the resource contention among sensing targets or the lack of valid data packets. Differently, the
centralized resource scheduling and the separation of data and control channels in the mobile
network can offer a stable sampling rate of the sensing signals with less multi-target contention
and no data-transmission dependency.

In existing ISAC works with 4G LTE and 5G NR [10, 13, 23, 28, 29, 38, 42, 46, 47], we find that
the majority of them have considered reducing the sensing errors by applying advanced signal
processing algorithms [46, 47], emerging artificial intelligence technologies [10, 23], multi-stream
infrastructure (e.g., multiple antennas [28] and multiple base stations [29]) when processing the
LTE and NR reference signals (RS). However, lacking deep considerations of the intrinsic features
of mobile networks, these topics are more or less discussed in other RF signal based works and
similar solutions can be found.

We believe that the above-mentioned centralized resource scheduling is one of the intrinsic
features to be well considered in ISAC. Take the existing works as an example, where fixed and
averaged RS resources are shared among different UEs by default. Due to the limited total amount
of available RS resources, one fast-moving UE will experience a sensing-quality degradation while
there will be a waste of RS resources for the other static UEs. Since the RAN protocol stack integrates
a data-plane scheduler that detects the data transmission demand of different UEs and schedules
the limited data-plane resources among them under the principle of a long-term fairness, can we
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design and integrate a similar RS scheduler to simultaneously boost the sensing quality and reduce the
resource waste in the multi-target sensing scenarios?

In traditional hardware-based black-box mobile networking infrastructure, only large device
vendors can achieve this goal and efforts have to be spent on the hardware modification. Fortunately,
the emerging 5G mobile networking technology named vRAN [11, 12] offers a more flexible way to
achieve the interoperation for ISAC. First, vRAN adopts the idea of Network Function Virtualization
(NFV) and implements the RAN protocol stack on general processors instead of dedicated chips
in software. This gives us the opportunity of deploying a dedicated RS scheduler and upgrading
it on demand. Besides, VRAN specifies a group of standardized interoperation interfaces, which
enables the dynamic service loading and parameter adjustment. Plenty of works have leveraged
the white-box 5G vRAN to enhance the data-transmission services like the cross-layer optimized
video streaming [4, 6, 8, 44].

Though 5G vRAN shows promise in the wireless sensing applications, we have to tackle the
following technical challenges before turning the above RS scheduler extension into a practical
system:

e First, how to match sensing demands with sensing resources? Within the scope of our
research, there is currently no work focusing on sensing resource scheduling in 5G networks.
The criteria for estimating sensing resources, defining sensing demands, and matching them
are not clear.

e Second, how to eliminate scheduling delays? While the scheduler adapts to changes in
UE demands, scheduling delays remain unavoidable. The scheduling delays come from the
execution time of the different algorithms and the requirement for recording some sampling
points.

In this paper, we propose ELASE to address the above challenges. Our main contributions can be
summarized as follows:

(1) We discuss the feasibility of the RS scheduling with 5G vRAN and provide our considerations
about the scheduling space and principles (Sec.2).

(2) We dissect the architecture of ELASE and present its three main components named UE state
recognition, SRS resource scheduling and Elimination of scheduling delays (Sec.3).

(3) We implement ELASE with a 5G vRAN and commercial 5G UEs and conduct extensive
evaluation experiments. The results show that ELASE can elastically schedule appropriate
sensing resources for UEs in different environments and motion states, thus achieving small
tracking errors. The predictive scheduling scheme can further reduce allocation errors for
sensing resources. (Sec.4).

Besides the above core contents, we also discuss the limitations of ELASE and point out correspond-
ing future directions in Sec.5, and summarize the related works and their differences with ELASE in
Sec.6. Finally, Sec.7 presents a conclusion of our work.

2 Background

In this section, we first review the organization of the time-frequency domain resource in 5G,
emphasizing the details of the resource for sensing(Sec.2.1). Then, we introduce the background
of 5G vRAN and discuss the feasibility of elastically scheduling the sensing resource in 5G vVRAN
(Sec.2.2). Finally, we highlight the design principles of our elastic resource scheduler (Sec.2.3).

2.1 Organization of 5G Reference Signal

5G frame structure. 5G NR’s physical layer (PHY) adopts the Orthogonal Frequency Division
Multiplexing (OFDM) as the basic modulation scheme. As illustrated in Figure2, the resource
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Fig. 2. 5G PHY frame structure and time-frequency domain patterns of four different reference signals in the
U slot.

elements (REs) of 14 OFDM symbols in the time domain and 12 subcarriers in the frequency domain
form the basic time-frequency unit named Resource Block (RB). The 5G slot is the time unit of one
RB. Multiple continuous 5G slots are structured into 5G frames. Typically, one frame lasting 10
ms contains 20 slots with three different types: Downlink (D), Uplink (U) and Special (S). Figure2
shows a basic slot format of "DDDDDDDSUU" in the commonly used Time Division Duplex (TDD)
mode.

Different 5G reference signals. 5G NR adopts various types of reference signals for clock
synchronization, frequency compensation and channel estimation for data transmission, including
Tracking Reference Signal (TRS), Phase Tracking Reference Signal (PTRS) and Demodulation
Reference Signal (DMRS) respectively. Moreover, for target sensing, it adopts the Channel State
Information Reference Signal (CSI-RS) in the downlink channel and the Sounding Reference Signal
(SRS) in the uplink channel. Our system utilizing 5G vRAN for elastic sensing only focuses on
processing the continuous samples of SRS. Different reference signals have different time-frequency
patterns regulated by the standards. We depict a classic case of these patterns in Figure2, where
SRS REs appear in the 14th OFDM symbol with a subcarrier spacing of 2 (termed as comb2 in 5G).

Extracting CSI from SRS. We can directly obtain the Channel State Information (CSI) for target
sensing by concatenating the channel estimation results of SRS provided by the 5G PHY layer. The
process of estimating H(s, f), the element of the CSI matrix at the s-th OFDM symbol and f-th
subcarrier, with the transmitted preamble X (s, ) and received signal Y (s, f) can be formulated as
follows:

_Y6h L di
= X6 - 2 Gepizn) . f) M

I=1
where a; denotes the complex attenuation, d; denotes the length of the I-th signal path, L is the
number of paths, A is the wavelength of the signal, and n(s, f) denotes noise.

H(s, f)
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Fig. 3. Protocol stack of 5G vRAN: key modules run on general-purpose processors and interconnect with
each other through standardized interfaces.
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2.2 Manipulating SRS for Sensing in 5G vRAN

Basic information of 5G vVRAN. 5G vRAN is proposed to solve the closedness problem of the
traditional RAN based on ASIC chips.

5G vRAN is usually used for deploying private 5G base stations. It is software-defined and
designed to manage personal spaces, such as a factory or a private room, where sensing resources
are limited. Scheduling sensing resources is necessary to improve the quality of service.

Figure3 shows the typical data-plane structure of the 5G vRAN protocol stack, from bottom to
top, including PHY layer, Medium Access Control (MAC) layer, Radio Link Control (RLC) layer,
Packet Data Convergence Protocol (PDCP) layer and Service Data Adaptation Protocol (SDAP)
layer. Since RLC, PDCP and SDAP are mainly responsible for the data transmission like packet
retransmission, segmentation, security and quality-of-service enhancement, etc., we here mainly
review the details of PHY and MAC.

In 5G vRAN, PHY layer is separated into two parts: (i) the low PHY responsible for relatively fixed
signal processing functions like FFT and iFFT; (ii) the high PHY responsible for upgradable modules
like channel estimation, OFDM modulation and channel coding. MAC layer centrally schedules
physical resources for data transmission, reference signals, and broadcast signals. To integrate 5G
vRAN with the capability of ISAC, we mainly focus on PHY’s channel estimation module for the
CSI retrieving and MAC’s scheduler module for the elastic SRS scheduling.

Feasibility of on-demand SRS manipulating with RIC. The software-implemented protocol
stack of 5G vRAN gives us the opportunity of manipulating SRS signals. Moreover, the O-RAN
alliance has proposed the RAN Intelligent Controller (RIC) as the standardized interfaces for the
vRAN interaction [2]. To obtain real-time information from vRAN and perform intelligent control,
the customized xApps built with the RIC SDK interact with the RIC agent embedded in the vRAN
via the E2 protocol. Although the current E2 protocol does not directly support the functionality of
the SRS manipulation, we can easily conduct such extension based on its various implementations
[30]. As depicted in Figure4, with the help of RIC, an xApp designed for the ISAC application
can deliver the SRS schedule to the MAC layer’s RB scheduler and collect the estimated channel
parameter to form the complete CSI matrix.

RIC can be classified into three categories based on its operating timescale: (i) Real-time RIC, with
a timescale of less than 1 ms; (ii) Near-RT RIC, operating within 10 ms to 1 s; and (iii) Non-RT RIC,
with a timescale greater than 1 s. RIC is capable of seamlessly accessing both application-layer and
RAN-level data. Recent researches [9, 20] have also enabled the integration of AI/ML to enhance
its services. The requirements for scheduling SRS and obtaining CSI are minimal, allowing these
services to be seamlessly integrated into existing RIC frameworks. In our case, we only require the
use of a Near-RT RIC.
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2.3 Principles of Elastic Sensing Resource Scheduling.

Before digging into the detailed designs of ELASE, we introduce the definition of “Elastic Schedul-
ing” and its criteria. We define "Elastic Scheduling" as follows. Elastic scheduling refers to the
adaptive and real-time configuration of sensing resources aimed at minimizing resource waste
and maximizing service quality. This is achieved by monitoring target demands and leveraging
prediction algorithms. The process involves the following two criteria:

Dynamic Resource Scaling: Our research focuses on adjusting resource allocation for users
to minimize the number of SRS slots. The scaling of resources is based on the real demand. If the
demands for resources exceed the total capacity, algorithms can calculate weights to schedule
sensing resources among users rationally.
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Real-Time Availability: The base station monitors the sensing demands of users. There is a
delay between changes in user sensing demands and resource adjustments. This delay includes the
sampling time for monitoring and the scheduling activation time. The scheduling activation time is
constrained by the performance of the RIC, which is typically within 10 ms and can be ignored.
The system should eliminate the major delay from sampling.

Then we introduce our considerations in the SRS scheduling pattern, range, and logic. For a
typical setting of the "DDDDDDDSUU" slot format, SRS can be scheduled in the S and U slots. For
the standard 100 MHz bandwidth in 5G, each slot contains 273 RBs in the frequency domain. To
provide a more effective SRS scheduling, we adopt the following principles.

Scheduling Pattern: First, for the SRS comb pattern, we choose the default comb2 instead of
other available options such as comb4. Second, for the SRS symbol pattern, we adopt at most one SRS
symbol in each slot. The rationale behind our selections is the trade-off between the gain and cost:
obtaining a denser CSI sample in one slot yields a limited sensing gain. Third, we choose continuous
RB allocation each schedule instead of the dispersed one, i.e., allocating [RB_start, RB_num] for
each user at each slot. According to the 5G NR standard, the value of RB_start can be arbitrary
while the value of RB_num must be chosen from the non-contiguous values in a predefined table
(Table 6.4.1.4.3-1 of 3GPP TS38.211 [1]). It’s worth noting that the maximum value of RB_num is
272 instead of 273 because the number needs to be a multiple of 4.

Scheduling Range: Here we mainly discuss the sparsest schedule and the densest schedule
of SRS RBs in the time-frequency domain. For the sparsest one, we comply with the reference
implementation of a most popular vRAN system named OAI In OAI, the SRS is scheduled once
at the end of each frame for channel state estimation, with a minimum bandwidth of four RBs.
This sparsest schedule can produce CSI samples with a sampling rate of 100 Hz and a sampling
bandwidth of 1.5 MHz. For the most densest one, we can allocate the entire SRS to one UE. This
densest schedule can produce CSI samples with a sampling rate of 600 Hz and a sampling bandwidth
of 100 MHz.

Scheduling Logic: Since the SRS resources are limited, we expect to elastically schedule them
among multiple targets. Our basic scheduling logic is to allocate more resources to the targets
that need these resources more, e.g., fast-moving targets. For slow-moving targets or static targets,
we reduce the resources scheduled for them. When the total number of SRS RBs required by the
sensing targets of the entire system is fewer than the number of all available SRS RBs, we free up
the remaining RBs for pure communication usage.

3 System Design
3.1 ELASE Overview

The overview of ELASE is shown in Figure6. ELASE implements a system for identifying UE’s state
and scheduling SRS sensing resources. We introduce each module below:

o UE state recognition. ELASE aims to accurately identify the dynamic demands of UEs of sensing
resources. To achieve this objective, we leverage the UE’s velocity as a state indicator, recognizing
that different velocities reflect different states and require varying SRS resources. To recognize
the UE’s velocity, we utilize the existing low sampling rate SRS in communication and derive the
velocity information from the CSI. It should be emphasized that the velocity estimation algorithm
requires a certain number of sampling points, which necessitates a certain amount of time to gather.
To address this, we implement a periodic strategy and find out the appropriate cycle length.

¢ SRS resource scheduling. After recognizing the UE’s state, it’s essential to establish a mapping
relationship between the state and the sensing resources and allocate resources effectively for
each target. Each UE can request a specific SRS bandwidth based on its task requirements or use
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Fig. 6. Design overview of ELASE.

the default configuration. We achieve dynamic adaptation by mapping the UE’s velocity to the
sampling rate of SRS. The base station aims to minimize the number of time slots used in scheduling
sensing resources. Additionally, in scenarios of sensing resource oversubscription, we propose
a weight-based allocation algorithm specifically tailored for sensing tasks to optimize resource
utilization efficiency.

e Elimination of scheduling delays. The velocity of each UE is calculated by the base station
at the end of each cycle. One intuitive approach is to employ an immediate response scheduling
strategy, where the current velocity is utilized to allocate sensing resources for the next cycle. We
call it Reactive Scheduling Scheme. However, this scheme introduces a significant delay between
the UE acquiring sensing resources and its state change. To eliminate delays, we perform a delay
analysis and propose a Predictive Scheduling Scheme.

o Multi-target sensing. Finally, ELASE accomplishes different sensing tasks using the different
amounts of SRS resources scheduled to different targets. In this context, we consider localization
and tracking to be multi-target sensing tasks.

3.2 UE State Recognition

In Sec.2.3, we mentioned that in the original 5G communication system, each frame assigns one
SRS for channel quality estimation. This SRS has a sampling rate of 100 Hz. We utilize this periodic
SRS to recognize the UE’s state. We introduce the velocity estimation algorithm in this section.

3.2.1 Velocity Estimation Algorithm. Prior researches [17, 27, 41] have proposed methods for
estimating the velocity of device movement using CSI exclusively. This method proposed by
C?IL[17] is based on the electromagnetic standing wave field. CIL finds through electromagnetic
wave propagation theory and measurements that when an antenna traverses an indoor space at
a velocity of v, a periodically ripple-like pattern with a frequency of f; emerges, following the
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relationship fy = 2;{—“, where A represents the wavelength of the electromagnetic wave. C?IL utilizes
a CSI matrix over time on one spatial stream and one subcarrier to extract the frequency f after
undergoing data preprocessing, noise cancellation, fading enhancement, and frequency estimation.
By extracting f from multiple subcarriers and selecting the median value f; as the final result. Then
the moving velocity is estimated by:
_ Ak
C2

3.2.2  Periodic Strategy. The velocity estimation algorithm requires a certain number of sampling
points. However, adopting a pipeline strategy would introduce more computational overhead.
Considering the need for resource scheduling, we adopt a periodic strategy. At the end of each
cycle, the base station calculates the velocity of the UE in the current cycle and schedules the SRS
resources for the next cycle. If the cycle is set too short, there would not be enough CSI samples
to identify the UE’s state, and the scheduling space for the next cycle would be insufficient. On
the other hand, if the cycle is set too long, the estimated average velocity of the UE in the current
cycle could not represent the UE’s state accurately, leading to inadequate timely performance of
the system. We will measure the impact of different cycle lengths in our experiments.

@)

3.3 SRS Resource Scheduling

3.3.1 Mapping Velocity to SRS Resources. After obtaining the velocity of each UE, it is necessary
to convert the velocity into sensing resource demand. Regarding the bandwidth of SRS, each UE
can transmit its required bandwidth, ranging from 0 to 100 MHz, to the base station. ELASE will
record the identifier of the UE and the bandwidth it requests. Different bandwidths can be adjusted
to suit different sensing tasks. In the case where a UE does not make an application, by default, we
allocate half bandwidth to stationary UEs and all bandwidth to moving UEs. Then, let’s delve into
the sampling rate. According to [17], the typical velocity of walking indoors ranges from 0.8 to 1.6
m/s, with a maximum value of 2 m/s. The velocity value represents the displacement of the UE
per unit time, while the sampling rate represents the number of samples taken within the same
unit of time. Assuming the UE is sampled once after the same displacement, we establish a positive
correlation between the sampling rate and velocity value. Let’s denote the sampling rate as f;, the
scaling coefficient as k, and the velocity value as v. The relationship among them can be expressed
as follows:

fs=k=xo (3)
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To determine the coefficient k, we conduct a set of pre-experiments to measure the relationship
between tracking error and sampling rate. We set the velocities of UE from 0 m/s to 2 m/s, and the
sampling rate from 20 Hz to 200 Hz. We use the sampling method when the rate is less than the
sparsest rate and keep the bandwidth of SRS 100 MHz. The localization method adopts a modified
super-resolution method from SpotFi [21].

The experimental results are shown in the Figure7. Based on the experimental findings, we
determine the value of the scaling coefficient as k=100 to keep the average trajectory tracking error
less than 70 cm.

In infrequent circumstances, the velocity of indoor user equipment might exceed 2 m/s. Continu-
ously increasing the sampling rate linearly will result in a relatively small gain in the sensing effect.
As shown in Figure 5, the SRS is distributed across three consecutive slots within one subframe.
Hence, when the sampling rate is higher than 200 Hz, a UE will be repeatedly sampled in a short
time interval, thereby leading to a smaller gain in the sensing effect. We employ a logarithmic
function to fit this situation and ensure smooth transitions at the segmentation points:

fs=200%1n(v) + 61,0 > 2m/s (4)

Additionally, for UEs with extremely low velocities, it is essential to maintain a minimum
SRS sampling rate. Therefore, we have set a threshold of 50 for the minimum sampling rate. To
summarize, the sampling rate is given by:

50 ,0 <0.5m/s
fs=4 100 *0v ,0.5m/s <v < 2m/s (5)
200 = In(v) + 61 ,0 > 2m/s

3.3.2 Resource Allocation Algorithm. Once the demands of SRS resources for the next cycle are
determined, the base station considers scheduling which SRS resources in the time and frequency
dimensions for each UE. This resource allocation problem can be transformed into a two-dimensional
coloring problem. In the time domain, there are 500 time slots per second available for SRS resources,
while in the frequency domain, a bandwidth of 272 RBs is allocated. It is possible to divide and
allocate bandwidth to different UEs within the same time slot, but the allocated bandwidth for a
single UE needs to be continuous.

Effects of SRS slot numbers on data throughput. We conduct experiments to measure
uplink data throughput using SRS with varying time slots. Figure8 illustrates that the uplink data
throughput decreases as SRS slot numbers increase. The throughput with 600 SRS slots shows a
5.8% reduction in comparison with that with 100 slots. This is due to the fact that in the OFDM
structure, sensing resources and communication resources are mutually exclusive.

Therefore, to minimize the total number of SRS time slots, the resource allocation algorithm
combines the sensing resource demands of all UEs. If the combined SRS bandwidth required by
multiple UEs does not exceed 100 MHz, they can be merged into a single time slot. In our resource
mapping scheme, two stationary UEs can each occupy 50 MHz bandwidth within the same time slot.
It is important to note that different resource mapping schemes exist, allowing for a finer distinction
of UE SRS bandwidth requirements. In such cases, multiple UE SRSs with a total bandwidth not
exceeding the upper limit can be allocated in the same time slot.

When multiple UEs require a large amount of resources, there may be a challenge of overall
demand exceeding the available resource limit. In this case, traditional communication or computing
resource scheduling scenarios typically handle best-effort applications that focus primarily on
throughput and do not have strict delay constraints. Therefore, schedulers often use proportional
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fair algorithms to reduce resources in the same proportion to meet overall demand. However,
in sensing resource scheduling, sensing tasks usually have timeliness requirements, so resource
allocation algorithms should be able to provide a QoS guarantee.

Giving the same weight to all targets is not ideal in sensing resource scheduling. Our insight is
that during periods of changes in motion state, UEs have a high priority for resource allocation and
require prompt processing by the scheduler. In particular, UEs with increasing resource demands
should be assigned greater weights. We use the sampling rate as an indicator to reflect changes in
resource demand and assign higher weights to UEs with increasing sampling rates.

Additionally, to address the problem of starvation, we introduce a historical deficit compensation
mechanism when calculating weights. The weight calculation for each target is:

N max(fsr — fsr-1,0) N fS(demand,T-1)

100 fs(allocate,T—l)

In the weight calculation, the second term involves subtracting the previous cycle’s sampling rate

from the current cycle’s sampling rate, thereby increasing the weight for UEs with rising sampling

rates. The third term represents the ratio of resource demand to allocation in the previous cycle,
which serves to compensate UEs with low resource satisfaction rates.

Wi =

(6)

3.4 Elimination of Scheduling Delays

3.4.1 Reactive Scheduling Scheme. The Reactive Scheduling Scheme functions effectively when
the UE’s velocity remains constant. However, when the UE experiences changes in velocity, such
as acceleration, the velocity in the next cycle exceeds the estimated velocity in the current cycle.
Consequently, the sensing resources allocated based on the current cycle’s velocity may prove
insufficient to meet the actual demand. This scheme introduces a delay of one cycle between the
change in the UE’s velocity and the adjustment of allocated sensing resources. When considering
resource allocation as a service to meet evolving demands over time, such delays can pose challenges
for subsequent sensing applications.

The reason behind the one-cycle delay in the Reactive Scheduling Scheme is that the base station
requires one cycle to obtain CSI for determining the UE’s velocity. Therefore, when scheduling
sensing resources for the UE in the next cycle, the UE’s velocity in that cycle remains unknown. In
response to this challenge, we propose the Predictive Scheduling Scheme.

3.4.2  Impact of Scheduling Delays on Real-Time Applications. In practical real-time applications,
different levels of latency have different impacts on system performance and user experience.
Focusing on the human localization and tracking application in ELASE, we discuss the specific
effects of different latency levels as follows:

Millisecond-Level Latency (less than 100ms). For human motion, even at the highest speeds
(typically less than 8m/s in general environments), latency under 100ms is nearly negligible and
does not significantly affect the system’s sensing accuracy. However, in high-speed scenarios, such
as autonomous driving, applications require much stricter real-time responses. A 100ms latency
in these scenarios could prevent the system from accurately recognizing dynamic environmental
changes, potentially causing safety hazards.

Second-Level Latency (100ms - 1s). On a time scale of seconds, humans can change their
motion states or trajectories, making second-level latency a major factor that undermines tracking
accuracy. Delays within this range can introduce big errors in tracking results, degrading the
performance of the sensing system. In addition, ELASE has a sampling period between 500ms and
1s, resulting in scheduling delays within this range. Therefore, eliminating second-level latency is
the target for the predictive scheduling scheme.
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Higher Levels of Latency (1s - 10s). When latency exceeds 1 second, it severely destroys the
real-time capabilities of the system. On one hand, the base station will be unable to keep pace with
the dynamic changes in human motion, leading to the failure of the sensing results. On the other
hand, users will perceive lag in the tracking service, lose confidence in the system’s performance,
and may even choose to discontinue using the service entirely.

3.4.3 Predictive Scheduling Scheme. Although the base station lacks knowledge of the UE’s velocity
in the next cycle during resource scheduling, it can gather historical velocity data of the UE in
multiple past cycles. By utilizing this historical data, the base station can compute the current
acceleration of the UE and use it to estimate the UE’s velocity in the next cycle. Furthermore,
to enhance the accuracy of UE velocity prediction, we employ a Kalman filter that combines
prior information with measurement information. This integrated approach enables more precise
state estimation. The velocity prediction algorithm leverages the acceleration values and Kalman
filtering to predict the velocity in the next cycle. At the end of the next cycle, the velocity estimation
results are fed back into the Kalman filter. This iterative process aims to continuously optimize
the prediction algorithm and enhance its accuracy in predicting. By incorporating this feedback
mechanism, the prediction algorithm can rectify and improve its predictions based on real observed
velocity data.

Table 1. Comparison of prediction algorithms

Algorithm Noise Robustness Computational Complexity Dynamic Modeling Capability
Moving Average Low 0o(1) None
Kalman Filter High 0O(d®) (d: number of states) Strong
Particle Filter High O(Np) (Np: number of particles) Strong

Advantages of choosing Kalman filter. Prediction scheduling can utilize the moving average
algorithm, particle filter algorithm, or Kalman filter algorithm. Table 1 illustrates their characteristics.
The moving average algorithm is simple but responds slowly to changes in user states and cannot
handle dynamically changing systems. The particle filter algorithm is capable of handling complex
dynamic scenarios. However, as the number of particles is typically in the thousands, it causes
significant computational overhead, making it unsuitable for real-time prediction tasks.

In our velocity prediction scenarios, states in the Kalman filter can be modeled as [speed,
acceleration], resulting in fewer states and lower computational overhead. We choose the Kalman
filter as the state prediction algorithm because of its robust dynamic modeling capabilities, low
computational complexity, and strong noise robustness. Given the characteristics of the prediction
scenarios and real-time requirements, the Kalman filter algorithm is more suitable for prediction
scheduling.

Theoretical analysis of scheduling delay. Table 2 illustrates the difference between the
Reactive Scheduling Scheme and the Predictive Scheduling Scheme. In the scenario described, a
UE remains stationary during the first cycle, accelerates from the 2nd to the 3rd cycle, and moves
rapidly from the 4th to the 6th cycle. As the UE’s velocity is high in the 4th cycle, it should ideally
obtain a high sampling rate SRS during that cycle. However, due to the inherent delay of the
Reactive Scheduling Scheme, the base station only recognizes the UE’s velocity is high at the end
of the 4th cycle, causing the UE to obtain the high sampling rate SRS in the 5th cycle. In contrast,
the Predictive Scheduling Scheme predicts the velocity of next cycle at the end of the 3rd cycle,
thereby eliminating scheduling delays.
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Table 2. A scenario where UE accelerates first and then moves uniformly. Predictive Scheduling Scheme
eliminates the scheduling delay.

Cycle 1 2 3 4 5 6
UE’s acceleration Zero Positive Positive Zero Zero Zero
UE’s velocity Zero Low Low High High High
. Recognize Recognize Recognize Schedule a high
Reactive scheme ! velocity in 2 velocity in 3 velocity in 4 sampling rate SRS \
Predict Predict Schedule a high

\ \

Predictive scheme ! velocity in 3 velocity in 4 sampling rate SRS

3.5 Multi-target Sensing: Localizing and Tracking

After the resource scheduling process, the base station extracts CSI from the received SRS, analyz-
ing it to determine the UE’s serial number, time slot, and associated frequency. Leveraging this
information, the base station can offer customized sensing applications for individual users.

In ELASE, we take localizing and tracking as sensing tasks. We adopt a super-resolution localiza-
tion algorithm inspired by SpotFi.

This algorithm is specifically designed for scenarios where there are few antennas and many
subcarriers, aligning with our system’s characteristics. SpotFi introduces a virtual sensor array
that combines the CSI values from each subcarrier and antenna. By leveraging this virtual array, it
jointly estimates the Angle of Arrival (AoA) and Time of Flight (ToF) for each multipath signal. Then
it finds out the AoA of the direct path. Additionally, SpotFi utilizes the Received Signal Strength
Indicator (RSSI) from the access point (AP) to estimate the distance between the UE and the AP.
Considering the unique features of the 5G vRAN system, we have made two specific modifications:

(1) Although the RSSI value of the uplink signal can be obtained at the 5G vRAN base station,
we conducted measurements and discovered that the CSI amplitude also contains distance
information. In the same room, there exists a consistent relationship between the CSI ampli-
tude and the distance from the UE to the base station. Therefore, we utilize the CSI amplitude
to estimate the distance between the UE and the base station.

(2) The SpotFi algorithm can achieve localization using a single AP and one CSI sampling. To
reduce localization errors, SpotFi incorporates the results of three APs from one sampling.
Differently, ELASE comprises only one base station, but it has positioning results from high-
frequency sampling. Considering the limited velocity of human movement indoors, we
employ the continuity of movement to discard outliers and mitigate localization errors.

4 Implementation and Evaluation
4.1 Implementation

First, we build a complete 5G testbed including a 5G base station and multiple commercial 5G UEs.
The 5G base station consists of the 5G VRAN and the 5G core network. Details of these components
are listed as follows:

¢ 5G vVRAN: We adopt the most widely deployed open-sourced vRAN project named OpenAir-
Interface (OAI). The hardware-based RU of OAI runs a USRP N310 with 2 TX antennas and 2 RX
antennas. The software-based vDU and vCU of OAI run on a PC equipped with an i9-13900K CPU
and 16GB RAM. The USRP and the PC are connected through a 10 GBE optic fiber due to the heavy
traffic of the raw IQ samples. The VRAN test is set up with a 100 MHz bandwidth at 3.9 GHz (N77
band) with a 30 KHz sub-carrier spacing.

¢ 5G core network: We deploy the commercial version of free5GC for its better stability and
easier operation than the open-sourced one. Since ELASE requires the raw CSI samples for a better
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Fig. 9. Experiment scenario

sensing quality, we do not use the Location Management Function (LMF) provided by the 5G core.
The core network runs on a Linux industrial computer directly connected to the vRAN PC with a
2.5 GBE network cable.

e 5G UEs: We choose the commercial 5G Customer Premise Equipment (CPE) instead of the
smartphone because it can access the private 5G network in non-public network frequency bands
like N77. No hardware and software modifications are applied to these UEs in ELASE.

Second, we implement the three key components of ELASE and deploy them on the same PC
that hosts the OAI’s protocol stack.

Figure9 shows the real-world testbed deployment of ELASE. All the vRAN hardware is statically
placed on a wooden table inside a conference room, including the four antennas of the USRP. The
moving UEs are either held by volunteers or carried on a guide rail. The volunteers randomly walk
around the room with different velocities. The guide rail can precisely control the motion of the UE
with specific acceleration or velocity, thereby obtaining accurate ground truth. All the experiments
are IRB-approved, and all data are anonymized.

4.2 Baselines and Comparison Methodologies

The baseline is a scheme that uses the original SRS with a sampling rate of 100 Hz and a whole
bandwidth, evenly allocated to UEs. We compare the baseline with two other scheduling schemes:
reactive scheme and predictive scheme. We evaluate the weight-based allocation algorithm in the
scenario of resource oversubscription

We use trajectory tracking error and resource allocation error as the metrics for evaluation. The
trajectory tracking error measures the end-to-end performance of ELASE. The resource allocation
error is defined as the absolute difference between the number of SRS allocated to one UE and the
real demand in one cycle. The number of SRS is derived by multiplying the number of RBs by the
number of slots. We use resource allocation error as the metric because ELASE focuses on elastic
and prompt sensing resource scheduling. Therefore, if the delay in scheduling increases, the value
of allocation error will be larger.

, Vol. 1, No. 1, Article . Publication date: May 2025.



Sensing Resource Scheduling in 5G vRAN: An Elastic Approach 15

Table 3. Experimental conditions and parameters

Attribute Meeting Room Corridor Laboratory

Room Size 5m X 4.2m 5m X 2m 5m X 4m

Multipath Effect Some multipath Few multipath Rich multipath

Signal Interference WiFi signals exist in 2.4G and 5G bands. No signal in the N77 band (3.3GHz-4.2GHz)
Number of UEs 3

Test Time 30s

Hardware Specifications The base station is equipped with an 19-13900K CPU, 16 GB RAM and no GPU. The
operating system is Ubuntu 22.04. The RU is USRP N310 with 2TX and 2RX.
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—— ElaSe

1
5,150 i Elso i 5150 8
> i > i >
100{ | 100 : 100
50| | - Groundruth | 50 ! —-- GroundTruth 50
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(a) Meeting room (b) Corridor (c) Laboratory (d) TE analysis

Fig. 10. Overall performance of trajectory tracking error in different environments.

4.3 Overall Performance

Trajectory tracking error. Table 3 describes the experimental conditions and parameters. We
first evaluate ELASE’s performance of trajectory tracking in various environments, as illustrated in
Figure10. During each experiment, we adopt the predictive scheduling scheme.

Figure10(a)(b)(c) depicts the system’s tracking trajectory of UEs in these three environments,
compared with the ground truth. Additionally, Figure10(d) presents the cumulative distribution
function (CDF) of the tracking error. It is evident that the laboratory environment showcases the
highest tracking error, as indicated in Figure10(c), mainly attributed to the heavy multipath. In the
meeting room, corridor, and laboratory, the median trajectory tracking error is 60.24 cm, 63.57 cm,
and 78.31 cm, respectively.

In the baseline scheme, the median trajectory tracking error is 90.25 cm, 94.53 cm, and 110.69
cm, respectively. The median trajectory tracking error of ELASE in the predictive scheme is 34%
lower than that of the baseline scheme.

Resource allocation error. Then we evaluate the performance of our allocation scheme under
different motion states of UEs. The acceleration and velocity of UEs vary in different motion states.
We analyze ELASE’s performance of resource allocation in a 10-second motion of each UE.

Figure11(a)(b)(c) illustrate the real demand for SRS by the three UEs and the changes in allocation
over time in reactive, predictive, and baseline schemes. By comparing the real demand with the
reactive scheme, we observe that the allocation results of the reactive scheme are generally close to
the real demand in the previous cycle. This indicates a scheduling delay in the reactive scheme.
In Figurel1(a), when the UE’s velocity changes most of the time, it is evident that the allocation
curve of the reactive scheme lags behind the real demand. However, in Figure11(b), when the UE’s
velocity remains unchanged, the results of the reactive scheme align with the real demand value.
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Fig. 11. Overall performance of resource allocation error in different motion states.

Figure11(d) provides statistical results of the resource allocation error of the three schemes.
The resource allocation error of the reactive scheme is 78% lower than that of baseline scheme,
furthermore, the resource allocation error of the predictive scheme is 92% lower than that of the
baseline scheme. This is because the baseline scheme does not consider the state changes of the UE,
resulting in insufficient sensing resources being allocated to the UE. The results illustrate that the
prediction algorithm effectively predicts the velocity of the UE in the next cycle.
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Fig. 12. Trajectory tracking error using different resource allocation algorithms.

4.4 Performance of Weight-based Allocation Algorithm

In scenarios where resources are oversubscribed, ELASE uses the weight-based allocation algorithm.
We compare it with the proportional fair algorithm and baseline scheme with no scheduling.

4.4.1  Performance of Error Control Capability. To create a scenario of resource oversubscription,
we simulate two UE accesses in the SRS scheduler of vVRAN and maintain a speed of 1m/s. We
connect three real UEs to the base station and record the trajectory tracking error as the real UEs
move. The resource allocation algorithm used for simulated and real UEs is identical.

Figure12(a) presents the kernel density estimation of tracking errors under different resource
allocation algorithms, revealing the probability distribution characteristics of the tracking errors.
The baseline algorithm exhibits the poorest performance, with more than half of the errors exceeding
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120 cm. In comparison, the proportional fair algorithm shows relatively concentrated errors, with
38% of the errors falling between 100 and 150 cm. The weight-based allocation algorithm delivers
the best performance, with errors primarily concentrated around 80 cm.

According to Figure12(b), the average tracking errors for the baseline, proportional fair, and
weight-based allocation algorithms are 123.09 cm, 101.16 cm, and 90.39 cm, respectively. Meanwhile,
the root mean square errors for these algorithms are 43.98, 38.58, and 34.65, respectively. The
weight-based allocation algorithm reduces the density of large errors by effectively allocating
sensing resources, making it more suitable for tasks related to sensing resource allocation.

4.4.2  Performance of Long-term fairness. As shown in Equation (6), when calculating the weight,
the third term of the equation is the resource satisfaction rate of the UE. We define resource

satisfaction rate of the i-th user in the T-th cycle R;7 = %, 0 < R < 1. To evaluate the

ability of the weight-based allocation algorithm to maintain fairness, we simulate the dynamic
behavior of four UEs and record their resource allocation. The simulation time is set to 150 cycles
to evaluate the long-term performance.
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Fig. 13. Evaluation of Long-term fairness.

Figure 13(a) illustrates the velocity variations of the four UEs. The time is divided into four
phases: Cycles 0 to 50, 50 to 75, 75 to 100, and 100 to 150. Under this scenario, UE 1 and 3 are
considered high-speed devices that require more sensing resources.

Figure 13(b) shows the sampling rate of the UEs calculated by the velocity, which can be called
demand value. Based on this, we compute the actual allocated sampling rates using the weight-based
allocation algorithm and the proportional fair allocation algorithm. As shown in Figure 13(c)(d),
due to resource over-subscription, the allocated value to each UE is lower than the demand value.

Table 4. Comparison of resource satisfaction rates: WB vs. PF allocation algorithm

User Equipment Weight-Based Allocation Algorithm Proportional Fair Allocation Algorithm

Max  Min Average Max  Min Average
1 0.9390 0.5821 0.7240 0.8287 0.5136 0.7332
2 0.8023 0.6928 0.7203 0.8259 0.6854 0.7193
3 0.9340 0.6928 0.7191 0.9799 0.6854 0.7135
4 1.0000 0.4848 0.7177 0.7927 0.3845 0.7095

Table 4 shows the resource satisfaction rate statistics of two allocation algorithms. It can be
seen that the resource satisfaction rate of the weight-based allocation algorithm is higher than
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that of the proportional fair algorithm in terms of maximum, minimum, and average values. This
demonstrates the former’s ability to ensure fairness.

For the minimum satisfaction rate, the weight-based allocation algorithm maintains generally
higher levels. For example, the minimum value for UE 4 is 0.4848 with the weight-based allocation,
while the minimum value with the proportional fair algorithm for the same equipment is only 0.3845.
This indicates that the former one is better at ensuring a certain level of resource satisfaction under
resource scarcity. In conclusion, the weight-based allocation algorithm is effective in maintaining
long-term fairness.

4.5 Impacting Factors

In order to evaluate the system’s performance comprehensively, we have identified some internal
and external factors that affect it. Internal factors include the length of the scheduling cycle and
the length of the prediction window, which affect the accuracy of UE state recognition and velocity
prediction. External factors include the velocity and acceleration of UE motion, which impact
trajectory tracking.
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Fig. 14. Evaluation of the four main factors’ impacts on the performance of ELASE.

Length of the scheduling cycle. We set different cycle lengths while keeping the UE’s motion
state the same. We normalize the resource allocation error in one cycle to obtain the allocation
error in one second. The experimental results are presented in Figure14(a).

For the reactive scheduling scheme, the resource allocation error initially decreases and then
increases as the cycle length grows, reaching its minimum value at a cycle length of 0.4 seconds.
When the cycle length is short, there are insufficient sampling points for state recognition, leading
to inaccurate velocity calculation. Besides, when the cycle spans a longer duration, the recognition
result is the average velocity during past period, which causes resource allocation error because
the UE may change state in one long cycle.

Length of the prediction window. We evaluate the impact of the length of the prediction
window on allocation error. A smaller resource allocation error indicates more accurate velocity
prediction. We set the cycle length to 0.4 seconds and vary the length of the prediction window
from 2 cycles to 5 cycles in our experiments. The results are shown in Figure14(b).

The resource allocation error of the reactive scheme is not affected by the prediction window
length and remains consistent. For the predictive scheme, the resource allocation error is minimized
when the prediction window length is 3 cycles. This suggests that in the experimental scenario,
there is the highest correlation between the UE’s motion and its motion state within the previous
1.2 seconds. Using more historical velocity data, on the other hand, will decrease the accuracy of
the prediction.
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Velocity of UEs. We select the optimal parameter values for the following experiments. The
length of the scheduling cycle is set to 0.4 seconds, and the prediction window length is three
cycles. The UE’s velocity is set to 1 m/s, 2 m/s, 3 m/s, 5 m/s, and 8 m/s to comprehensively analyze
low-speed scenarios and potential high-speed cases. We analyze the trajectory tracking error of
the UE during uniform motion, and the results are shown in Figure14(c). Since the analysis focuses
on uniform motion, the velocity prediction algorithm could not exert its effectiveness, resulting in
similar performance between the predictive scheduling scheme and the reactive scheduling scheme.
As the velocity increases, the tracking error remains low and stable in the first four experiments.
However, at 8 m/s, a noticeable increase in error occurs. Despite this increase, the error remains
within an acceptable range.

Under speeds below 2 m/s, the tracking error remains at a low level of 65 cm, indicating the
effectiveness of the resource scheduling. For the last case with extremely high speed, we note
that such a scenario is rare. We then analyze the resource scheduling process in this case. Due
to the 5G frame structure of "DDDDDDDSUU," the last three consecutive slots are allocated
for scheduling SRS signals. In high-sampling-rate scenarios, overly dense SRS scheduling may
result in neighboring SRS signals being repeatedly allocated, limiting the improvement in sensing
performance. Additionally, due to the dynamic changes in signal arrival path during high-speed
movement, the sensing performance drops. In conclusion, the results show that the system adapts
well to different velocities.

Acceleration of UEs. We set the UE to speed up from 0 m/s to 2 m/s with different accelerations
and analyze the trajectory tracking error during the acceleration process. The results are shown
in Figure14(d). As the UE’s acceleration increases, both reactive and predictive schemes show an
increase in tracking error, with the increase being more gradual in the predictive scheme. The
reactive scheme has a scheduling delay of one cycle. Therefore, as the UE’s acceleration increases,
the delay leads to an increase in tracking error. The predictive scheme can better adapt to motion
with a constant acceleration.

4.6 ELASE Overhead
ElaSe introduces additional overhead to 5G vRAN, which can be divided into the following parts:

(1) Algorithmic Overhead: This overhead primarily comes from the following modules: the
user state recognition algorithm; the resource allocation algorithm in the resource scheduling
module; and the state prediction algorithm used to eliminate scheduling delays.

(2) RAN Intelligent Controller Scheduling Overhead: We use the open-source RIC of
FlexRAN to transmit SRS scheduling information to the protocol stack. During scheduling,
this process incurs a certain degree of scheduling overhead. However, since we employ a
near-real-time RIC, the scheduling delay remains below 10 ms.

4.6.1 Analysis of Algorithmic Computational Complexity.

(1) User State Recognition Algorithm: The primary computational cost stems from the Short-
Time Fourier Transform. When the input signal length is N and the window length is M,
the computational complexity of the STFT can be approximated as O(N - logM). In our
implementation, the sampling frequency of CSI is set to 100 Hz, hence N < 100.

(2) Resource Allocation Algorithm: This primarily involves calculating the weight of each
target and aggregating the allocated resources. The computational complexity of calculating
each individual weight is a constant C. Therefore, the overall computational complexity of
the resource allocation algorithm is O(C).

(3) State Prediction Algorithm: The Kalman filtering algorithm is employed. As shown in
Table 1, its computational complexity is 0(d?), where the dimension d = 2.
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(4) Summary: In a scenario with n targets, the total computational complexity of the algorithm
is the sum of the above three components. The overall complexity grows linearly with the
number of targets n, and can be expressed as:O(n - (O(N - logM) + O(C) + O(d®)).

4.6.2 Time Latency. Our algorithm is executed on a computer equipped with an 19-13900K CPU
and 16GB of memory. In our experiments, when the number of targets is 100, the total runtime
of the aforementioned algorithm is less than 10 ms. Combining the algorithmic overhead with
the scheduling overhead of the RIC, the overall delay introduced by ElaSe does not exceed 20 ms,
which is approximately equivalent to the time span of two 5G frames. Compared with scheduling
cycles at the 400 ms level, this latency is negligible.

4.7 Summary of Evaluation
Based on the above evaluations on ELASE, the following summary can be drawn:

(1) The median trajectory tracking error of ELASE is 68.69 cm, which is 34% lower than that of
the baseline in realistic indoor settings.

(2) Compared with the scheme without any schedule, the resource allocation error of ELASE is
92% lower, achieving more effective use of sensing resources.

(3) Compared with the proportional fair algorithm, the weight-based allocation algorithm per-
forms better in handling resource oversubscription, achieving a 10.6% reduction in trajectory
tracking error.

(4) Length of the scheduling cycle and length of the prediction window influence ELASE’s
performance of the velocity prediction differently, but they don’t influence the efficacy of the
prediction. In the worst case, the resource allocation error of the predictive scheme amounts
to 63.68% of that of the reactive scheme.

(5) When the UE moves at different velocities, the system maintains a consistent level of trajectory
tracking error. The trajectory tracking error increases as the acceleration of UEs increases,
but the prediction scheme can mitigate this upward trend.

5 Discussion and Future Works

In this section, we discuss practical issues concerning the applicability and efficacy of ELASE and
propose corresponding future research directions.

5.1 Applying ELASE to other sensing cases

In the cases of localization and tracking, velocity is considered as an effective metric for describing
the dynamic demands of UEs. However, not all cases can apply velocity as a general metric. For
example, in gesture recognition or fall detection, the spectral characteristics of the target have been
proven to be an effective indicator. In system design, we particularly pay attention to this point
and decouple the user state recognition and SRS resource scheduling modules by using reference
signals in different time slots. This loose coupling ensures the effectiveness of resource scheduling
and also provides flexibility for choosing new metrics when applying ELASE to other sensing cases.
When dealing with new sensing cases, it is only necessary to adjust the metrics based on state
recognition module. This approach even supports scenarios where UEs perform different sensing
tasks concurrently.

5.2 Combining Multi-stream 5G Reference Signals

First, ELASE uses the uplink SRS signals only mainly because of the inaccessibility of the CSI
processing module of the commercial 5G UEs. The first category of extension is to utilize the uplink
DMRS. Since that the DMRS symbols only experience one more layer of precoding than the SRS
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symbols, successive works can convert the DMRS-based CSI into the SRS-based CSI and extend
the total amount of sensing resources. Besides, successive works can utilize the link symmetricity
and use the downlink CSI-RS and DMRS signals provided by white-box UE devices for the further
extension. Note that such multi-stream extensions are quite straightforward to be implemented
in ELASE with our defined scheduling interface and logic. Challenges like handling the dynamics
caused by the binding between DMRS to data streams and quantifying the quality of multi-channel
sensing signals before the integration need to be further addressed.

6 Related Works
6.1 Wireless Sensing with LTE/5G

Nowadays, ISAC with LTE and 5G has attracted growing research attention. Many works model
the localization errors, discuss the impacts of modulation methods and sensing algorithms on the
errors, and conduct extensive simulation-based evaluations [19, 39, 40]. Besides, Feng et al. propose
the interference cancellation [47] and the noise reduction [46] algorithms to address the practical
issues when applying traditional signal processing based solutions like AocA/DoA in real-world
applications like the pedestrian tracking. Except for improving traditional algorithms, several
works utilize classic machine learning algorithms and emerging deep learning algorithms to further
reduce the sensing errors [23] and defend the replay attacks [10]. Last, recent innovations in the
sensing infrastructure like the uniformed linear array antenna [28], the multi-cell RS integration
[29] and multi-source RS integration [3] manage to bring the ISAC’s capability to a new level.
Although these works have tried their best to reduce the sensing errors and some have claimed
the feasible extension in the multi-target sensing scenarios, they only use the vanilla RS signals
with default settings. This prior condition limits their ability to fairly allocate RS resources when
availability is constrained. Different from them, ELASE dynamically recognizes the resource demand
of different targets and elastically schedules the limited RS resources among them, which is in
parallel with the related advances in the algorithm optimization and the infrastructure upgrading.

6.2 Multi-target Wireless Sensing

Various wireless signals exhibit the ability to sense multiple targets simultaneously, such as WiFi
signals [18, 34, 45], acoustic signals [33, 35-37], mmWave signals [49, 50] and so on. WiPolar [34]
leverages the different polarization of reflected signals to accurately separate the multipaths from
different targets, which, in turn, allows it to track them simultaneously. Symphony [36] exploits
the layout of the microphone array to distinguish acoustic signals from different targets along
different paths as well as signals from the same target, then calculates their locations concurrently.
Hawkeye [5] assigns different mmWave backscatter tags with on-off keying frequencies as their
unique signatures, thus the radar can identify and localize hundreds of tags at on shot by analyzing
their modulation patterns.

Despite their inspiring abilities of sensing multiple targets, all usable resources (e.g., frequency)
are employed in the existing works without a resource allocation mechanism. In contrast, ELASE
elastically allocates sensing resources among the multiple targets to achieve better scalability.

6.3 Resource Scheduling in vRAN

In terms of resource scheduling in vRAN, existing works focus on the following aspects:

® Resource slicing and allocation. Many studies focus on how to improve the performance
of vRAN through intelligent resource slicing and allocation strategies. RadioSaber[8] proposes
a RAN slicing strategy that enables channel-aware resource allocation at both the inter-slice
scheduler and the enterprise scheduler. It can achieve 17%-72% better throughput than other RAN
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slicing works which perform channel-agnostic inter-slice scheduling. Bonati et al.[7] uses deep
reinforcement learning agents to achieve closed-loop integration of data analysis and network
control, optimizing the scheduling strategies of network slices. These works usually meet the
service quality requirements of different users and applications, but mainly focus on the needs of
communication applications, without involving the scheduling of sensing resources.

¢ Real-time RAN control. Some works are dedicated to developing a near real-time RIC
framework that dynamically manages network resources through various xApps. This type of
research typically focuses on real-time decision-making in wireless environments, such as beam-
forming, interference management, and channel estimation. EdgeRIC[20] presents a real-time RIC
co-located with the distributed unit. It can access RAN and application-level information to execute
Al-optimized and other policies in less than 1ms. Janus[9] also aims at real-time measurement and
control of the RAN. Janus extends eBPF to allow third-parties to load arbitrary codelets inline in
the RAN functions in a provably safe manner. It is integrated directly with each distributed unit,
making it vendor-specific. These research results have achieved real-time control of RAN resources
and can be easily adjusted for managing sensing resources (e.g., reference signals) in RAN.

Although existing works have made some progress in resource slicing and real-time control, they
typically don’t address the scheduling of sensing resources. In contrast, ELASE proposes the first
framework for scheduling SRS in 5G vVRAN. Experimental results demonstrate that ELASE enhances
the effectiveness and quality of multi-target sensing tasks.

7 Conclusion

In this paper, we present the first sensing resource scheduler in 5G networks, ELASE, to schedule SRS
resources for UEs elastically and in time. ELASE benefits from the programmability of 5G vRAN and
utilizes the interface of its protocol stack. It uses the velocity of UEs to represent the time-variant
sensing demands. ELASE saves sensing resources by minimizing the number of used sensing slots
to preserve communication capabilities. It adopts a predictive scheduling scheme to eliminate
scheduling delays and uses the weight-based allocation algorithm to handle cases of resource
oversubscription better. Extensive experiments under real-world scenarios show that ELASE can
schedule sensing resources appropriately in different situations, achieving small trajectory tracking
errors and resource allocation errors.
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