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Abstract. Wi-Fi human sensing has attracted numerous research stud-
ies over the past decade. The rapid advancement of machine learning
technology further boosts the development of Wi-Fi human sensing.
However, current Wi-Fi human sensing suffers from the "data scarcity"
problem: all the existing proposals require collecting a large amount
of human-based datasets to train the sensing models, which is labor-
intensive and may raise ethical concerns in certain scenarios. This obsta-
cle seriously restricts the size, quality, and diversity of available datasets,
thereby affecting the sensing performance in terms of accuracy and cross-
domain applicability. In order to solve this problem, we in this paper
propose Metasurface-Assisted Sample Synthesis (MASS), a novel ap-
proach to synthesize high-fidelity Wi-Fi sensing samples that effectively
capture both the essential features of human motion and environment-
specific multipath characteristics without requiring human involvement.
The evaluation results show that MASS is effective in boosting the
machine learning performance, improving the classification accuracy by
18%, and enhancing the cross-domain sensing accuracy by 22%. These
findings underscore the potential of MASS to facilitate the creation of
high-quality, diverse datasets with minimal human involvement and as-
sociated labor costs.

Keywords: Wi-Fi Sensing - Data Augmentation - Metasurface - Ma-
chine Learning - Cross-domain Sensing.
1 Introduction

Benefiting from the ubiquitous Wi-Fi infrastructures, Wi-Fi sensing technolo-
gies exhibit versatile abilities to enable diverse applications, including location

* Co-primary authors: Jiaming Gu and Shaonan Chen
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Human, and other Data Augmentation Methods

estimation [15,34, 37], health monitoring [17], activity recognition [20,32], etc.
Recent advancements further release the potential of Wi-Fi sensing by integrat-
ing deep learning (DL) models into sensing systems, with which the sensing
ability and accuracy can be significantly enhanced (29, 33, 37].

Comprehensive and diverse labeled datasets are necessary for training a ro-
bust DL model. When it comes to Wi-Fi human sensing, a sample of sensing data
is the coupling result of human motions and the complex multipath propagation
of the indoor environment (commonly referred to as the sensing domain). This
inherent coupling results in data scarcity through two primary avenues. First, the
requirement for human participation makes the process labor-intensive and may
raise ethical concerns, especially when collecting health-related samples from pa-
tients or individuals with disabilities. Second, the multipath characteristics are
a crucial factor in sensing. The usability of data collected in one domain may
degrade when it is used to train a DL model for sensing in other domains [4, 35,
37].

Data augmentation is deemed a feasible solution to tackle the data scarcity
problem. Some existing works acquire more data by simply applying different
transformations on the original signals [36] (e.g., scaling, translating the axis, or
adding noise), but are likely to alter the physical properties of signals. Model-
driven approaches take into account the signal propagation process [11, 38], but
overlook the complex multipath effects, which lead to low robustness of the
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DL models. Recent works propose to employ style transfer or generative Al for
sample synthesis [5,6,19,31, 35|, but still require a large amount of data for
training and fall into the "chicken-and-egg" dilemma.

Inspired by the advancements in metasurface research [8,14,28,30], we in
this paper propose Metasurface-Assisted Sample Synthesis (MASS) for syn-
thesizing Wi-Fi sensing samples. Fig. 1 compares MASS with human-based data
collection and other data augmentation approaches. Leveraging its inherent ca-
pacity of waveform manipulation, a metasurface can emulate the effect of human
motion on Wi-Fi signals. By replacing the human with the metasurface in the
task of collecting sensing samples in real environments, MASS presents a new
and much more efficient method to synthesize sensing samples without human
participation, significantly reducing labor cost and avoiding ethical concerns.

Our contributions can be summarized as follows:

— We present the theoretical framework underpinning MASS and develop a
complete workflow for its realization, elucidating how metasurfaces can be
utilized to emulate the effect of human motion on Wi-Fi signals.

— We present the approach of MASS and elaborate on the procedure from col-
lecting an activity template to acquiring metasurface-synthesized samples.
This approach significantly reduces labor costs and alleviates ethical con-
cerns while efficiently capturing the intrinsic domain characteristics of the
sensing environment.

— We implement MASS and evaluate it under different settings. The results
demonstrate that MASS significantly enhances the machine learning accu-

racy, yielding an 18% accuracy gain, which is 9% higher than the transformation-

based augmentation by adding noise. Furthermore, MASS can also increase
the accuracy up to 22% in the cross-domain sensing scenarios, where the
traditional augmentation only achieves 9% improvement.

The structure of this paper is as follows: Sec. 2 provides a comparison be-
tween MASS and related studies. Sec. 3 elaborates on the design of MASS. The
evaluation setup, results, and findings are presented in Sec. 4. Sec. 5 discusses
the implications of MASS, and finally, Sec. 6 concludes the study.

2 Related Work

2.1 Data Augmentation for Wi-Fi Sensing

Transformation-Based Augmentation: In computer vision, data augmenta-
tion is widely used to mitigate data scarcity. Simple transformations are applied
to the original images to generate new samples. As shown in Fig. 1¢, Dense-LSTM
[36] extends this concept to Wi-Fi sensing by adding noise, scaling the time axis,
or stretching the frequency axis in spectrograms. Although these techniques im-
prove classification performance, they alter the inherent physical properties of
the Wi-Fi signal [11]. For example, stretching the Doppler frequency dimension
might incorrectly transform "walking" into "running".
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Fig.2: MASS Overview

Model-Driven Augmentation: To preserve the intrinsic physics of Wi-Fi sig-
nals, model-driven data augmentation methods have been proposed [11,24, 26,
27]. For example, SimHumalator [27] models human limbs as scatter points
shown in Fig. 1d and computes their impact on Wi-Fi signals to synthesize
samples. However, these studies ignore the modeling of complex environmental
multipath effects. For example, interactions such as wall reflections and furniture
absorption are often ignored, despite being critical for data diversity [4, 35].

Data-Driven Augmentation: With advancements in deep learning, data-
driven augmentation methods have emerged. Some studies [19, 31| employ style
transfer for cross-domain adaptation, while others [5,6] utilize generative Al
to create new samples. Despite the potential of these methods, they encounter
issues with interpretability, as Al models may not adhere to physical laws |7,
13]. Furthermore, data-driven approaches face the "chicken-and-egg" dilemma,
as they require extensive data for training before they can generate new data.

In contrast, MASS is theoretically robust and makes no simplifications to
the environment. It synthesizes new Wi-Fi sensing samples that capture human
motions and the environment multipath simultaneously without the need for an
extensive Wi-Fi sensing dataset.

2.2 Domain-Independent Sensing

Besides data augmentation, some studies aim to extract domain-independent
features, thus performing well in cross-domain sensing scenarios [12,22]. Some
other works use transfer learning to adapt models to unseen domains with min-
imal labeled data [3,21]. However, DPSense [10] suggests that domain-specific
features cannot be entirely removed. Although these works have improved cross-
domain sensing performance, they still cannot avoid the labor-intensive sample
collection process, while MASS aims to resolve data scarcity at the sample collec-
tion stage, making our work orthogonal and complementary to these methods.

3 Design

This section first presents an overview of MASS, then elaborates on its sample
synthesis capability using the MASS theory, and finally outlines the procedure
of sample synthesis.
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3.1 Overview

As shown in Fig. 2, MASS operates in two stages: the activity collection stage and
the sample synthesizing stage. In the first stage, activity templates are gathered
to capture the impact of human activities on Wi-Fi signals. In the second stage,
the metasurface is deployed alongside Wi-Fi sensing equipment across various
environments. At this point, the metasurface simulates human movements based
on the recorded activity templates. Taking into account the real-world setting in
which the process occurs, the samples collected by the Wi-Fi sensing equipment
represent a combination of human activity and environmental characteristics.
By replacing humans with the metasurface, MASS avoids high labor costs and
addresses potential ethical concerns, while still producing substantial sensing
samples. For example, a total of N x L samples can be synthesized from N
activity templates and L environments.

3.2 MASS Theory

But how does a metasurface emulate the human activity? This section presents
the MASS theory, which first models the environment when either a human or
metasurface is present and then methodically translates the problem of emulating
human activities to finding the appropriate control voltage sequence, or coding
sequence, for the metasurface.

When a human is present in a multipath-rich indoor environment, as illus-

trated in Fig. 3, the CSI of the n-th Wi-Fi package is modeled as [25, 34]:

H,(f)=HY(f)+ HY(f)

P,
—HO() + Y HE (I (g HP(f), o
p=1

where H®)(f) is the static component that arises from static objects such as
walls and chairs. H 55”( f) is the dynamic component from the interaction be-
tween the human and the environment, further decomposable into P,, multipath
components. For the p-th component, the signal propagates along the path p;,
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and is reflected by a part of the human body simplified as a scatter point at g with
reflection coefficient F,(Lh) (q). The signal then propagates along the path p, to the
receiver. Each path, py, is modeled as HP*) (f) = ap . (f) exp (—j 20f Topy ),
where ay, p, (f) is the attenuation and 7, ,, is the path delay.

When the metasurface, rather than the human, is present in the same envi-
ronment, the n-th CSI can be expressed as:

H,(f) = HO(f) + 3 HE ()1 () HE) (1), (@)

where ;™ (g 4) denotes the reflection coefficient of the meta-atom at g 4. rim (g4)
is determined by the metasurface design and the voltage V,,(q4) applied to the
meta-atom. As depicted in Fig. 4 and Fig. 5, our metasurface comprises 16x8
meta-atoms, each capable of controlling phase reflection from 0 to 360 degrees,
while keeping the amplitude almost unchanged.

Eq. 2 diverges from Eq. 1 solely by substituting i (q) with rim (q4). Thus,
the human activity is replicated by equating FT(Lm)(q 4) to F,(Lh)(q). To emulate
an activity template {I}(Lh)(q)}, an accurate coding sequence {V,,(g4)} is
required so that the impacts of metasurface, I, 7gm)(q 4), are aligned with the
impacts of the human body, F,(lh)(q).

3.3 Sample Synthesis Procedure

Building on the MASS theory, the sample synthesis process unfolds as follows:

Activity Template Collection: activity templates are collected in a microwave
anechoic chamber. In the chamber, multipath effects are minimized and the
impacts of human activities on Wi-Fi signals are isolated. A vector signal an-
alyzer [2| is used to transmit a single-frequency sinusoidal wave, a volunteer
performs the activity in the chamber, and the echo signal is collected as the ac-
tivity template. In practice, since the human sensing necessitates a space where
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the volunteer can move freely, we modified an office space and surrounded the
sensing area with absorbing materials to reduce reflections, as shown in Fig.
7, Domain A. During the measurement of activity templates, the antennas are
placed on a 1.5-meter-high stand, directly facing the human torso.

Coding Sequence Derivation: the coding sequence is then derived from the
activity template. Each activity template is filtered by a bandpass filter to remove
the direct current component and focuses on the human motion. The control
voltage series is then determined by referring to the phase extracted from the
filtered template according to the relationship depicted in Fig. 5.

Sample Synthesis: Upon obtaining the coding sequences, the metasurface is
prepared to emulate human activities. The metasurface and Wi-Fi devices are
deployed in a real-world environment, with coding sequences applied to the meta-
surface. Consequently, Wi-Fi devices capture the CSI as synthesized samples.

As illustrated in Fig. 6, a comparison of the micro-Doppler spectrum (MDS)
for the "running approach" activity reveals strong similarities between the human-
based sensing sample and the synthesized sample. Both spectra demonstrate a
clear sequence: initiation of running around 1 second, speed maintenance until
approximately 2 seconds, and deceleration around 2.6 seconds. This demon-
strates MASS’s ability to capture the dynamic characteristics of human activi-
ties. We acknowledge slight discrepancies between the two spectra, and attribute
it to the inherent, non-deterministic nature of human movement.

It is important to note that our method focuses on simulating the entire
activity as a whole, rather than simulating specific, isolated time slots. Fig. 6
serves as an intuitive demonstration of the overall similarity for all activities. For
quantified similarity results and a more rigorous analysis, readers are referred to
Sec. 4.

4 Evaluation

4.1 Experiment Setup

Metric: The evaluation of MASS is conducted through end-to-end experiments,
with activity recognition accuracy serving as the metric. LeNet [16] is employed
as the classifier. Before classification, CSI preprocessing [18, 22] is performed to
correct the phase error and filter out noise.
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Experiment Environments: Sensing samples are collected in four distinct en-
vironments, as depicted in Fig. 7. Domain A, the microwave anechoic chamber,
serves both as the activity template collection site and a sensing sample col-
lection site. Domains B and C emulate typical indoor environments using the
same room, with Domain B being more spacious and Domain C containing more
miscellaneous items. The key difference between Domain C1 and C2 is the po-
sitioning of the sensing target and the Wi-Fi equipment, and Fig. 8 shows the
scenario of Domain C2.

Sensing Equipment: PicoScenes is selected as the Wi-Fi sensing platform,
which is compliant with the standard Wi-Fi protocol [1]. For data collection,
PicoScenes is configured to transmit packets at 800 Hz over a duration of 3
seconds, resulting in each sample comprising 2400 packets.

Collected Dataset: Four volunteers of varying heights and weights participate
in performing seven common daily actions within the specified domains. These
actions include: Walk Approach (WA), Walk Away (WW), Run Approach (RA),
Run Away (RW), Sit Down (SD), Stand Up (SU), and Jump (JMP). Each action
is repeated multiple times to ensure the diversity of the dataset. After filtering
out corrupted samples (e.g., instances where a volunteer executed the wrong
action, or when accidental interference occurred), the dataset comprises 140
activity templates, 659 human-based samples, and 1520 synthesized samples.

4.2 Accuracy Improvement with MASS

This section verifies the effectiveness of MASS in improving activity recognition
accuracy by augmenting human-based sensing samples with synthetic samples
at different augmentation ratios. The augmentation ratio is defined as the ratio
of the training set size to the number of human-based samples in that set. The
baseline method, which involves duplicating real samples and adding Gaussian
noise, is referred to as NSY. The results are shown in Fig. 9.

Given the inherent instability of Al training, we utilize a repeated k-fold
cross-evaluation procedure [9]. All human-based samples are partitioned into
k folds. For each fold and augmentation ratio, M different subsets of synthetic
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samples are merged with k& — 1 folds to train the model, and the remaining fold
is used for testing. It ensures that each fold is tested M times with distinct sets
of synthetic samples. The mean accuracy and standard deviation provide a more
reliable metric.

At 100% augmentation, representing no augmentation, both methods achieve
the identical accuracy of 73% with only human-based samples. As the augmen-
tation ratio increases, noticeable accuracy improvements are observed for both
methods. At 350% augmentation, MASS achieves an accuracy of 91%, which is
18% higher than no augmentation and 9% higher than NSY at its maximum
accuracy of 82% at 450% augmentation. Importantly, MASS consistently out-
performs NSY across all augmentation ratios, demonstrating higher accuracy
and more stability as indicated by tighter standard deviations.

These outcomes suggest that MASS effectively synthesizes samples that cap-
ture essential features of human motion, offering more substantial benefits for
training compared to simple noise perturbation.

4.3 Cross-Domain Sensing Performance

This section evaluates the capability of MASS to characterize varying sensing
environments and facilitate cross-domain generalization. In cross-domain trials,
the model is trained in one domain (source) and tested in another (destination),
resulting in 12 distinct combinations derived from our four-domain dataset. For
convenience, we denote training on domain X and testing on domain Y as X —
Y.

To illustrate the differences between domains, Fig. 10 depicts the cumulative
distribution function (CDF) of Dynamic Time Warping (DTW) [23] distances
for the same activity across domains, along with intra-domain DTW distances
labeled "Intra-Domain" for comparison. The figure reveals that inter-domain
distances substantially exceed intra-domain distances. Specially, C1 — C2 has a
mean DTW distance of 8.92, close to the intra-domain mean distance of 8.61,
indicating minimal variance due to minor differences in sensing positions and
directions. In contrast, other inter-domain distances are considerably larger, sig-
naling significant changes in multipath characteristics. Notably, room size and
layout do not solely determine domain differences. A — C1 and A — C2 exhibit
smaller DTW distances than B — C'1 and B — C2.

Based on these observations, we categorized the 12 cross-sensing trials into
two groups: (1) Minor Change: domains with similar multipath characteristics
(i.e., C1 = C2 and C2 — C1). (2) Drastic Change: domains with significantly
different multipath characteristics (i.e., A— C1, A — C2, B— C1, B — C2,
A — B, and their reverse directions). These groups reflect different levels of
difficulty in cross-domain tasks. The drastic change group is more challenging,
whereas the minor change group poses less difficulty.

During each trial, synthetic samples from the destination domain are added
to enhance the training set, allowing the model to learn domain-specific features.
We compare MASS with multiple reference and baseline approaches. Ref I repre-
sents an ideal, albeit unrealistic scenario where the training set includes samples
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from both the source and destination domains. Ref II trains solely on the source
domain, reflecting real-world cross-domain sensing scenarios. NSY serves as the
baseline by enhancing the source domain training set with Gaussian noise, a
common practice in traditional data augmentation.

The results are summarized in Fig. 11. In the drastic change group, MASS
gives an average accuracy of 83%, outperforming Ref II by 22% and NSY by
13%. In the minor change group, MASS achieves an accuracy of 84%, which is
comparable to Ref I and Ref II. These results suggest that synthetic samples
effectively capture domain-specific multipath characteristics, thereby validating
the feasibility of MASS as a solution for cross-domain sensing.

5 Discussion

While the theory behind MASS is promising, its practical implementation presents
several challenges. As noted in Sec. 3, the method for template collection relies
on human-based measurements, which limits the diversity of activity templates
and, consequently, causes accuracy improvements to reach a plateau. We antici-
pate that in the future, activity templates will be collected from a broader range
of individuals and activities. Furthermore, since these templates are exclusively
related to human motion, MASS could potentially be expanded to include simu-
lations for template collection. Additionally, the manufacturing of metasurfaces
remains costly, and their operation requires specialized equipment. Despite these
challenges, the evaluation in Sec. 4 demonstrates that MASS remains effective
in synthesizing sensing samples. We plan to extend future verifications of MASS
to encompass more activities and environments.

6 Conclusion

This study introduces MASS, a novel approach to synthesizing Wi-Fi sensing
samples with the metasurfaces. MASS harnesses the unique properties of meta-
surfaces to synthesize samples that effectively capture both the key features of
human motion and the characteristics of the sensing environment. We demon-
strate that MASS can significantly enhance classification accuracy and improve
the generalizability, which underscores the potential of metasurfaces to empower
Wi-Fi sensing by synthesizing substantial amounts of high-fidelity data at min-
imal cost and human involvement.
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