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Abstract—The rapid development of wireless sensing technol-
ogy has opened new possibilities for non-contact health monitor-
ing. Among them, respiration is crucial information for assessing
vital signs. However, traditional methods face challenges of signal
interference and overlap in multi-person environments. In this
work, we propose a novel method for multi-person respiration
detection using a digital programmable metasurface (DPM). This
method takes advantage of the modulation characteristics of the
DPM in the time and space domain. It divides the Channel State
Information (CSI) from the Wi-Fi transmitter into multiple sub-
signals in the time domain and modulates the radiation directions
of the sub-signals for space redistribution. These signals are
received by the Wi-Fi receiver and recombined to restore the
CSI in each direction, thus enabling the accurate extraction of
respiration signals from targets in different directions. Exper-
imental results show that this method can directionally sense
the human respiration information in a specific direction under
the static working mode. Under dynamic scanning mode, it can
effectively separate and detect the respiration information of four
people from different directions. This system has great potential
for applications in wireless communication, healthcare, and smart
home environments.
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I. INTRODUCTION

W ITH the development of 5G, 6G, and the Internet of
Things (IoT), wireless sensing technology has rapidly

become an important foundation for the future intelligent
society [1]–[4]. This technology utilizes existing wireless net-
works and adopts advanced methods such as Radio-Frequency
Identification (RFID) [5]–[7], Ultra-Wideband (UWB) [8]–
[10], Wi-Fi sensing [11]–[13], and millimeter-wave radar [14]–
[16]. Without directly contacting the targets, it extracts infor-
mation by capturing and analyzing the reflection and scattering
of wireless signals [17]–[20]. By leveraging the propagation
characteristics of wireless signals, wireless sensing can de-
tect and monitor the status and activities of objects in the
environment without acquiring images or sounds, providing
great flexibility and enhancing privacy protection. Wireless
sensing technology transcends the limitations of traditional
sensing methods, heralding a new era of the intelligent society
characterized by cost reduction, increased flexibility, strong
privacy protection, and precise sensing capabilities.

Respiration is a fundamental physiological process, and
accurately monitoring respiratory patterns is crucial for di-
agnosing and managing various health conditions. Traditional
respiratory detection methods, such as wearable devices and
contact-based sensors, often face limitations in terms of com-
fort and accessibility [21]–[23]. Wireless sensing technology
offers an alternative approach [24]–[27]. By detecting the
subtle fluctuations in signals caused by chest expansion and
contraction during respiration through wireless signals, the
respiratory frequency can be estimated from the scattered sig-
nals of the body, enabling remote monitoring without physical
contact with the observer. UWB, radar, and RFID have been
used to achieve non-contact respiratory sensing [28]–[31].
However, these methods usually require specialized sensing
devices and are relatively expensive. With the widespread
popularity of Wi-Fi, Wi-Fi-based respiratory detection technol-
ogy has attracted extensive attention [32]–[37]. The detection
task can be accomplished by analyzing the Received Signal
Strength Indicator (RSSI) or Channel State Information (CSI)
in existing Wi-Fi networks. Among them, Fullbreath applies
the conjugate multiplication of CSI between two Wi-Fi anten-
nas to eliminate phase offsets and restore accurate respiratory
signals [32]. Farsense proposes a method that uses the ratio
of two antennas to break through the range limit of Wi-Fi-
based respiratory sensing, significantly increasing the range
of Wi-Fi respiratory perception [33]. Wi-Cyclops can capture
the CSI changes caused by respiratory movements through
a single antenna on a commercial Wi-Fi device for human
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Fig. 1. Typical application scenarios of multi-person respiration detection based on DPM-aided Wi-Fi. The DPM works with Wi-Fi terminal to separate and
detect breathing information from multiple people in the same space using time and space modulation capabilities.

respiratory sensing in indoor environments [34]. However, the
above-mentioned methods can only be implemented in the
presence of a single target. In a multi-target environment, the
respiration signals from different individuals interfere with
each other, making it difficult to accurately distinguish and
extract the respiration of each target. Moreover, in real life,
as a common wireless device, the Wi-Fi terminal is usually
placed in complex living areas, and the number of people in
its environment is often random.

Considering the multi-person respiratory detection scenario
in complex channel conditions, TinySense uses the time-
of-arrival of CSI to filter out the effects of multipath and
realizes the respiratory detection of two people [35]. Multi-
sense successfully models multi-person respiratory sensing as
a blind source separation problem and simultaneously detects
the respiratory information of four people [36]. Based on
the IEEE 802.11 standard, Xiong et al. extract respiratory
patterns from the Channel Impulse Response (CIR) phase, and
simulations verify the centimeter-level positioning accuracy
and respiratory perception ability of this method in multi-
person scenarios [37]. However, the above-mentioned methods
often require more complex algorithms or the usage of large-
scale antenna arrays to achieve, which limits the promotion of
the system in practical applications.

As a revolutionary two-dimensional structure, metasurface
has emerged as a cutting-edge electromagnetic (EM) wave ma-
nipulation technology. By designing sub-wavelength artificial
structures, metasurfaces can precisely control EM wave prop-

erties such as amplitude, phase, and polarization [38]–[43].
Additionally, DPM have overcome the limitations of fixed-
function designs in manufacturing [44]–[46]. DPMs utilize
digital coding to represent the different EM responses of the
meta-atom. By changing the digital coding, flexible and rapid
switching between each state can be achieved. This innovation
has paved the way for dynamic real-time manipulation of
EM waves and direct information processing, giving rise to
applications such as reconfigurable beamforming, information
entropy control, wireless communication, and imaging [47]–
[52].

With the help of metasurface technology, the application
scenarios in wireless environments have been significantly ex-
panded, especially in the field of wireless sensing. In the field
of respiratory sensing, researchers have accurately captured
the respiratory signals of multiple targets by fully exploiting
the space-time modulation characteristics of metasurfaces [53],
[54]. However, existing methods face several challenges: the
optimization algorithms involved are often complex, and the
system stability may be compromised in practice. Moreover,
the generation of harmonic signals can interfere with regular
wireless channels, necessitating a trade-off between sensing
performance and communication quality in practical deploy-
ments. Current time-space modulation mechanisms rely on
single-tone excitation signals, using the resulting harmonics
to sense multiple targets from different directions. Yet this
approach has critical limitations. First, single-frequency exci-
tation inherently produces harmonic frequencies that pollute
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the spectrum and interfere with existing wireless networks,
rendering such methods incompatible with current communi-
cation platforms. Second, they require complex real-time opti-
mization to scan the spatial domain across multiple harmonic
orders, leading to high computational overhead and stringent
hardware demands. Additionally, energy dispersion across
multiple harmonics results in low energy efficiency. These
limitations underscore the need for more spectrum-friendly,
computationally lightweight, and energy-efficient solutions to
support scalable and practical wireless sensing applications.

To address the above-mentioned issues, this paper presents
a multi-person respiration detection method that applies the
DPMs’ flexible modulation abilities for EM waves in both
time and space dimensions. A typical application scenario is
shown in Fig.1. This method takes advantage of the space-
time modulation characteristics of DPM to divide the CSI
from the Wi-Fi transmitter into multiple sub-signals in the
time domain and modulate the radiation directions of the sub-
signals for spatial re-distribution. Upon interacting with the
human targets in the environment, these signals are received
by the Wi-Fi receiver and recombined to restore the CSI
in each direction. This enables the accurate extraction of
respiration signals from targets in different directions. Practical
experiments have verified that, under static working mode, this
method can detect the respiration information of targets in a
specific direction while filtering out interference from other
targets. In the dynamic scanning mode, it can concurrently
separate and extract the respiration signals of four individuals.
The results show that, without modifying the Wi-Fi structure,
this method can effectively separate the respiration features of
multiple targets.

The main contributions of this paper are summarized as
follows:

(1) We propose a CSI space-time slicing and recombina-
tion method based on DPM. By leveraging the space-time
modulation characteristics of DPM, the CSI from the Wi-Fi
transmitter are divided into multiple sub-signals in the time
domain and re-distributed in space. Upon interacting with
the targets, these signals are received by the Wi-Fi receiver
and recombined to restore the CSI in each direction, thereby
enabling the precise extraction of respiration signals from
targets in different directions.

(2) We design a DPM with 2-bit phase-modulation func-
tionality in the Wi-Fi frequency band. By controlling the
reflection coefficients of its column meta-atoms through digital
coding, this DPM can manipulate the Wi-Fi signal to perform
single-beam scanning within the ±60° interval, significantly
enhancing the signal strength in the designated direction and
reducing the scattering energy in other directions.

(3) Based on the designed DPM and the standard Wi-Fi
transceiver architecture, we construct a multi-target respiration
sensing system based on DPM. The system features two
operating modes in multi-person scenarios: static operating
mode and dynamic scanning mode. Experiments have verified
that the DPM-aided Wi-Fi sensing system can directionally
enhance the respiratory signals in the target direction while
reducing interference from other directions, thus enabling the
effective extraction of multi-person respiratory signals.

The structure of this paper is as follows: In Section 2,
we briefly analyze the limitations of existing Wi-Fi-based
respiration sensing technologies, focus on discussing the in-
terference problems in multi-person scenarios under the mul-
tipath model, and introduce DPM to enhance the scattering
energy of specific targets. In Section 3, based on the space-
time modulation characteristics of DPM, a CSI space-time
slicing and recombination method based on DPM is proposed.
A prototype of a DPM-aided Wi-Fi sensing system is then
presented, accompanied by the design of a 2-bit DPM tailored
to operate within the Wi-Fi frequency band for this system. In
Section 4, the comprehensive performance of DPM is validated
within an anechoic chamber. Utilizing the designed DPM
and the standard Wi-Fi transceiver architecture, the prototype
system is constructed and tested in a real-world scenario.
The experimental results are meticulously analyzed thereafter.
Finally, Section 5 offers a comprehensive summary of the work
presented in this paper.

II. ANALYSIS OF THE LIMITATIONS OF WI-FI
RESPIRATION DETECTION

In recent years, Wi-Fi signals have been widely used to
monitor health conditions such as human respiration. Among
them, Wi-Fi CSI reflects various changes that the Wi-Fi signal
experiences during propagation, such as amplitude attenuation,
phase shift, and time delay. Under ideal conditions, the CSI
signal H(f) with a central frequency of f can be given as

H(f) = Ae−j2π d
λ , (1)

where A is the complex attenuation, d is the length of the
propagation path, and λ is the wave length. Fig. 2 (a) shows
the schematic diagram of Wi-Fi-based respiration detection.
The rhythmic expansion and contraction of the chest during
respiration lead to changes in the amplitude and phase charac-
teristics of CSI. By extracting the CSI and using the Variational
Mode Decomposition (VMD) algorithm, the respiration signal
can be recovered from the Wi-Fi channel information. The
Lagrange function L({uk}, {ωk}, λ) constructed by the VMD
algorithm can be expressed as

L({uk}, {ωk}, λ) = α

K∑
k=1

∥∥∥∥∂t [(δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2
2

+

∥∥∥∥∥h(t)−
K∑

k=1

uk(t)

∥∥∥∥∥
2

2

+ ⟨λ(t), h(t)−
K∑

k=1

uk(t)⟩,

(2)
where uk is the k-th modal component, which is the signal
component obtained by decomposition; ωk is the center fre-
quency corresponding to the k-th modal component; h(t) is
the original time-domain CSI as the signal to be decomposed;
λ(t) is the Lagrange multiplier; h(t)−

∑
uk(t) = 0 represents

the penalty for the constraint; α is the smoothing parameter,
controlling the smoothness of the decomposed modes; ∂t
represents the derivative to time t, calculating the frequency
characteristics of the signal; δ(t)+ j

πt is the Hilbert transform
kernel, used to obtain the analytic form of the signal; ∥·∥22 is
the square of the norm. The objective of this Lagrange function
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Fig. 2. (a) Schematic diagram of Wi-Fi single-person respiration detection. (b) Time-domain signal of an individual’s respiration extracted from Wi-Fi CSI.
(c) Spectrogram of an individual’s respiration extracted from Wi-Fi CSI. (d) Schematic diagram of Wi-Fi multi-person respiration detection. (e) Time-domain
signal of multi-person respiration extracted from Wi-Fi CSI. (f) Spectrogram of multi-person respiration extracted from Wi-Fi CSI.

is to decompose the CSI data received by Wi-Fi into k-modal
components uk and ensure that the sum of the decomposed
modes is as close as possible to the original signal. After the
CSI is processed by the VMD algorithm, the time-domain
signal of normal human respiration is shown in Fig. 2(b). It
depicts the stability of the respiration rate in the time domain.
However, the above-mentioned respiration detection scenario
is under ideal conditions. In practical applications, due to the
multipath effect, each path will experience different degrees
of amplitude attenuation, phase shift, and time delay, resulting
in signal overlap at the receiver. In addition, when there are
multiple people in the environment, the respiration signals
from different people will interfere and overlap, and the finally
received CSI can be expressed as

H(f) =

Q∑
q=1

Aqe
−j2π

dq
λ . (3)

In the formula, Q is the total number of propagation paths, and
Aq and dq are the complex attenuation and path length under
the q-th path, respectively. When there are multiple people, the
signal emitted by the Wi-Fi Tx will be reflected by different
people and received by the Wi-Fi Rx, as shown in Fig. 2(d). In
this case, the respiration time-domain signal recovered from
the CSI is shown in Fig. 2(e). Due to the interference and
overlap of respiration signals from different individuals, the
time-domain waveform becomes chaotic, making it difficult
to distinguish the respiration waveforms of individual targets.

Fig. 2(f) shows the respiration spectrum in a multi-person
scenario. Generally, the normal respiration frequency of an
adult is 12 to 20 breaths per minute (bpm). However, due to the
superposition of respiration signals from multiple individuals,
it is impossible to distinguish the respiration information
of each individual from the same time-frequency diagram.
Secondly, the aliasing of respiration signals with different
frequencies leads to the generation of combined frequencies,
contaminating the time-frequency spectrum. In Fig. 2(f), non-
normal respiration frequencies can be observed, and it is
impossible to judge and separate the respiration characteristics
of different targets.

It can be seen that the Wi-Fi-based, multi-person respiration
sensing results in a complex multipath environment that is un-
reliable. The fundamental reason is that the respiration signals
of each individual are reflected by multiple paths, interfere
with and superimpose on each other, and then are received by
the Wi-Fi receiver. The Wi-Fi signals are uncontrollable. Here,
we introduce the DPM to artificially manipulate the reflection
paths of EM waves. By dynamically regulating the working
states of each meta-atom on the DPM, customized manipu-
lation of electromagnetic signals in time and space can be
achieved. We propose a new respiration sensing method based
on DPM to solve the problems of multipath interference and
superposition in Wi-Fi sensing and realize the simultaneous
sensing of multi-person respiration signals.
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Fig. 3. (a) Schematic diagram of the DPM-aided Wi-Fi system. (b) Schematic
diagram of CSI time-space slicing and recombination.

III. PROPOSED DPM-BASED MULTI-PERSON BREATHING
DETECTION METHOD

A. DPM-aided Wi-Fi Sensing System Prototype Design

To overcome the interference and mixing of respiration
signals from multiple individuals, we propose a cooperative
framework between DPM and Wi-Fi terminals to slice and
recombine CSI across both temporal and spatial dimensions.
Specifically, the DPM is a two-dimensional array composed
of reprogrammable meta-atoms embedded with adjustable
devices. In the DPM, the reflection phase of the meta-atom
can be switched by applying different control voltages. The re-
flection phase of each meta-atom can be periodically switched
according to the corresponding digital binary. For the 1-bit
case, the binary representation is ”0/1”, while for the 2-bit
case, it is ”00/01/10/11”. Here, when a plane wave is incident
normally, the far-field function scattered by the DPM can be
expressed as:

f(θ, φ) =
M∑

m=1

N∑
n=1

Emn(θ, φ)Γmn×e−j
2πdmeta

λ sinθ[(m−1)cosφ+(n−1)sinφ)],

(4)

where θ and φ are the elevation angle and azimuth angle
in an arbitrary direction respectively, Γmn is the reflection
coefficient of the (m,n)-th meta-atom, dmeta is the spacing
between each meta-atom, λ is the wavelength of the central
frequency, and Emn is the meta-atom scattering pattern. By
optimizing Γmn of different meta-atoms, the DPM can achieve
different scattering effects, including the directional gain GT ,
which can be expressed as:

GT =
4π|f(θ, φ)|2∫ 2π

0

∫ π/2

0
|f(θ, φ)|2sinθdθdφ

. (5)

By optimizing different Γmn, the improvement of beam gain
in a specific direction can be achieved. Here, we combine the
DPM with the Wi-Fi system. We can enhance the energy of
a specific-angle path in a multipath environment. In this case,
the CSI in Eq. (3) can be modified to

H(f) =

Q−1∑
q=1

Aqe
−j2π

dq
λ +GTAT e

−j2π
dT
λ , (6)

where AT and dT are the complex attenuation and path length
along the directional path. This formula shows that after the
CSI is redistributed by the DPM, the signal energy in the
designated direction is enhanced. When the signal energy
is increased to a sufficient extent, Eq. (6) can be further
simplified to:

H(f) ≈ GTAT e
−j2π

dT
λ . (7)

The signal energy after the DPM beamforming is sufficient
to overpower the signals from other angles. This enables
the enhancement of signal energy in a specific direction and
weakens the interference from signals in other directions.

Based on the proposed theory, we put forward a DPM-
aided Wi-Fi respiration sensing system. The prototype design
of the system is shown in Fig. 3(a). The signal transmitted
from the Wi-Fi Tx is spatially redistributed by the DPM.
Then it is directed to different directions before being received
by the Wi-Fi Rx. The beams in different colors in Fig. 3(a)
correspond to different CSI slices, which are redistributed in
the designed direction. As indicated by Eq. (7), the extraction
of the information of the corresponding CSI slice from the
Wi-Fi Rx enables the acquisition of the sensing information
in the specific direction and diminishes interference from other
directions.

Specifically, we assume that the signal transmitted by the
Wi-Fi Tx reaches the DPM. In the time domain, the signal
has a total length of L and is composed of sub-CSI structures
each with a length of l. Here, l represents the space scanning
period of the DPM. Each sub-CSI is further evenly divided
into sub-blocks according to space beams and then spatially
distributed in various directions by the DPM, which can be
expressed as

CSI[n] =

K−1∑
k=0

CSIk[n] n = k·l, k·l+1, . . . , (k+1)·l−1 (8)
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where K = L/l is the number of sub-CSI blocks. The CSI
information in different directions can be further expressed as

CSIi[n] = CSI[n] · Beami[n] (9)

where CSIi[n] represents the CSI signal of the i-th direction
and Beami[n] is the beam masking function for the i-th
direction, which can be expressed as

Beami[n] =

{
1, if n ∈ time slot of direction i

0, otherwise
(10)

The segmentation result is shown in Fig. 3(b). In the space
domain, the CSI received at the receiving end undergoes down-
sampling. From the received CSI, the CSI signal in each direc-
tion can be separately extracted. Compared with the original
CSI, the sampling rate becomes 1/l of the original. Leveraging
the space-time modulation capability of the metasurface, the
receiver first performs down-sampling on the fully sampled
CSI signals. This down-sampling is conducted according to the
time cycles allocated by the metasurface in the space domain.
Specifically, it extracts CSI signals for each directional target
through time-division multiplexing and can be expressed as

CSIdown
i [m] = CSIi[m · l] m = 0, 1, . . . ,

L

l
− 1 (11)

where CSIdown
i [m] represents the downsampled signal for i-th

direction, and the sampling rate is reduced to 1
l of the original

rate. The proposed method applies the VMD algorithm to these
downsampled CSI signals from different directions, enabling
effective extraction of respiratory information.

As long as the Nyquist sampling theorem is satisfied,
the respiration signals from each direction can be accurately
reconstructed. For example, in Fig. 3(b), the purple CSI block
corresponds to a specific spatial direction. During reception,
CSI data are downsampled starting from this block at a rate
of 1/l relative to the original. These downsampled signals are
then recombined to reconstruct the CSI for Direction 1. By
processing this reconstructed signal, the system can extract
sensing information for that direction. Similarly, this approach
can be applied to other directions. Compared with traditional
Wi-Fi sensing methods, the proposed DPM-aided approach
can sense targets in multiple directions within a single CSI.
Moreover, during the sensing process, it can minimize inter-
ference from other directions as much as possible, enabling
efficient multi-target detection.

B. The design of the 2-bit DPM

To implement the proposed DPM-aided Wi-Fi sensing sys-
tem, we designed a DPM with a 2-bit phase quantization oper-
ating in the Wi-Fi frequency band. Fig. 4 shows the schematic
diagram of the meta-atom of the proposed DPM. The working
principle of this DPM is as follows: When irradiated by a far-
field source in the upper half-space (where z > 0), alterations
to the DPM’s coding enable the achievement of four distinct
coding states. There is a 90° phase difference between adjacent
states, while the amplitude remains unchanged.

As shown in Fig. 4(a), the structure of the DPM meta-
atom is presented in a 3D view, and its polarization direction

is the x-direction. The meta-atom structure is stacked using
printed circuit board (PCB) technology and consists of three
layers: the patch layer, the dielectric layer, and the ground
layer. The patch layer is composed of an irregular hexagonal
patch in the middle and feeder lines on both sides, which are
connected through two PIN diodes (MADP-000907-14020x).
The dielectric layer is F4B with a thickness of H=2.57mm
(dielectric constant of 2.65 and loss tangent of 0.02). The
ground layer is an unetched metal patch. A metal via in
the center of the hexagonal patch penetrates the three-layer
structure, connecting the ground planes of the digital and
analog signals. The optimal parameter settings of the struc-
ture are as follows: p=25mm, w1=12.428mm, w2=10.235mm,
w3=9.551mm, w4=15.882mm, w5=9.297mm, w6=9.894mm.

Based on the above design, we fabricated a DPM, and
the processing result is shown in Fig. 4(c). The entire meta-
surface contains 8×8 meta-atoms, with an overall size of
150mm×23mm×2.76mm. Two PIN diodes are soldered to
each meta-atom. The PIN diodes of each column of meta-
atoms share the same bias voltage, and the bias feeder lines
on the same side of each column of meta-atoms are connected,
sharing the same digital control signal. At the same time, all
the ground lines are connected to the metal back-plane of the
ground layer. Finally, all the bias feeder lines and ground lines
are integrated into a unified interface, which is connected to
the control platform via signal lines.

IV. REAL EXPERIMENT VERIFICATION AND ANALYSIS

To construct the proposed DPM-aided Wi-Fi respiration
sensing system, we first tested the EM response of the de-
signed and fabricated 2-bit DPM. By optimizing the digital
coding configuration, we evaluated its single-beam scanning
performance in space. Subsequently, based on the designed
DPM and the standard Wi-Fi system, we built the proposed
system. The system we proposed features two working modes:
static operating mode and dynamic scanning mode. The static
operating mode is used to verify the basic theory and extract
the respiratory information of the target in the specified di-
rection at the maximum sampling rate. The dynamic scanning
mode reorganizes the CSI time slices and space information,
achieving the effect of multi-target detection.

A. Performance Measurement of the 2-bit DPM

To validate the performance of the designed 2-bit DPM, we
tested its EM response and beam-scanning performance in a
standard anechoic microwave chamber. The detailed experi-
mental setup is illustrated in Fig. 4(d). A linearly polarized
horn antenna operating at 4-8 GHz is placed along the normal
direction of the metasurface. They are fixed on a turntable
at one end of the anechoic chamber together with the DPM,
and they can rotate 360° in the horizontal plane to facilitate
the measurement of the scattering pattern. At the other end
of the anechoic chamber, a horn antenna with the same linear
polarization is fixed to receive the scattering pattern in the
horizontal plane.

First, we test the reflection coefficient of the DPM using the
free-space method. Horn antenna 1 is connected to a vector
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Fig. 4. (a) Meta-atom structure of the DPM. (b) Stacked structure of the DPM meta-atom. (c) Reflection amplitudes and phases of the DPM in four discrete
states. (d) The scattering patterns of the DPM with normal incidence in diverse coding states.

network analyzer (Agilent N5245A), and its polarization di-
rection is the same as that of the DPM. By adjusting the digital
output voltage through the control platform, we controlled the
on/off states of the PIN diodes respectively to test the four
states of the DPM. Additionally, depending on the position
of the DPM, we set a corresponding time-domain gate in the
received signal of the vector network analyzer to filter out the
influence of environmental noise on the test results. Fig. 4(d)
shows the reflection amplitudes and phases of the DPM in four
states within the 5.1-5.5 GHz frequency band. The operating
frequency band of this DPM is 5.3 GHz ± 20 MHz, and there
is a phase difference of 90° ± 10° between its four states,

meeting the design requirements for operating in the Wi-Fi
frequency band. The amplitudes of state 2 and state 3 are
relatively low, which may be caused by two factors leading to
the non-ideal low reflection amplitudes: 1) Energy dissipation
of the F4B substrate due to its high loss tangent of 0.02; 2)
In the actual fabricated structure, there is no isolation design
between the digital and analog feeding networks, and part of
the energy will be coupled into the feeding network.

Subsequently, based on the measured reflection coefficients
of the DPM and in combination with the EM scattering model
presented in Eq. 4, we optimize the beam coding of the DPM
in the range from -60° to 60° (with an angle interval of 10°)
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Fig. 5. (a) Experimental scenario for multi-person respiration detection,
including four volunteers standing at different angles and the DPM-aided
Wi-Fi system. (b) The DPM with DIO lines and a control platform.

using the genetic algorithm. Similarly, we conduct the test in
the anechoic microwave chamber. By converting the optimized
coding into control voltages, the control platform inputs them
to the feeding ports through DIO lines to regulate the coding
states of each meta-column. During the test, antenna 1 and an-
tenna 2 are connected to port 1 and port 2 of the vector network
analyzer, which is used to provide the feed signal to the DPM
and receive the far-field scattering signal, respectively. After
performing angle scanning and recording data in the range
from -60° to 60°, the results are shown in Fig. 4(f). The results
show that the beam gain of the DPM is around 10 dB in -60°
to 60°. However, as the scanning angle increases, the beam
width gradually increases and the gain decreases accordingly.
This phenomenon might lead to a reduction of the sensing
performance at large angles, with the SNR degrading in
comparison to that at small angles. Therefore, this performance
change needs to be fully considered in practical applications.

B. The Hardware and Software Architecture of DPM-aided
Wi-Fi System

We constructed a DPM-aided Wi-Fi transceiver system
using the designed 2-bit DPM. This system consists of a pair of
Wi-Fi transceivers, the DPM, and its control system. The Wi-
Fi transceiver system employs the PicoScenes software-based
Wi-Fi signal transceiver platform on USRP, which features
easy operation, packet injection, and software-based baseband
implementation, meeting the actual testing requirements of
Wi-Fi scenarios [55]. PicoScenes is a public platform capable
of extracting CSI from 802.11ax frames. This feature is highly
consistent with the operational logic of commercial Wi-Fi
devices in terms of data processing and signal analysis. As a
result, it ensures that the signal interaction and data collection
methods in the test environment are identical to those in
the actual commercial environment. The DPM is a custom-
designed and fabricated one with 2-bit phase modulation
capability.

The DPM-aided Wi-Fi system’s hardware and software
architecture comprises three key components. The 2-bit DPM,
which supports discrete phase modulation, is fabricated and
connected to a control system via DIO lines. The control
system is based on an NI PXIe-1082 chassis, with the NI PXIe-
8881 central controller running Labview for task scheduling
and data storage, communicating with peripheral modules via

the PXI Express bus. An NI PXIe-6674T timing module
manages synchronization, generating sub-microsecond clock
signals for precise alignment between the USRP and DPM
control system, while the NI PXIe-6581B DIo module outputs
0/1.4V control signals through DIO lines to modulate metasur-
face. On the FPGA side, LabVIEW FPGA programming on
the NI PXIe-7966R maps the metasurface columns to I/O pins,
with a hardware timer generating microsecond-precision phase
switching sequences and a lookup table converting digital
codes to analog voltages for 2-bit phase modulation.

The signal processing workflow is implemented in MAT-
LAB. CSI data collected by the USRP is down sampled
to extract direction-specific components, decomposed using
the VMD algorithm to isolate respiration-related signals, and
then analyzed through short-time Fourier transform to estimate
respiratory rates. To achieve precise timing control, the PXIe-
6674T timing module exchanges trigger signals with the USRP
via external cables. Before each Wi-Fi frame transmission,
the USRP sends a GPIO trigger to the timing module, which
then generates a precision pulse-per-second (PPS) signal to
update the DPM phase profile via the FPGA, ensuring strict
synchronization between the Wi-Fi transmission/reception and
DPM modulation.

The overall schematic of the entire system is shown in Fig.
5. The Wi-Fi Tx is placed along the normal direction of the
DPM, and the Wi-Fi Rx is located at a distant site to collect
Wi-Fi signals in space. The antenna polarization directions of
the two Wi-Fi terminals are the same as the DPM to ensure
efficient modulation of Wi-Fi signals. The CSI packet-sending
time is set to 30 s. During the experiment, the volunteers are
positioned at different orientations around the metasurface and
remain stationary throughout.

C. Directional Respiration Detection under Static Operating
Mode

The system operates in two modes: static operating mode
and dynamic scanning mode. In the static operating mode,
the DPM creates a stable phase gradient on its surface to
achieve directional beamforming. In a multi-person scenario,
it can enhance the respiration signals of the target person in
a specific direction while reducing the strength of respiration
signals from other directions. In the dynamic scanning mode,
the DPM divides the CSI into multiple sub-signals in the
time domain. It proceeds to modulate the radiation directions
of these sub-signals for scanning multiple people in space.
Eventually, at the receiving end, the respiration information of
distinct persons in each direction can be sequentially retrieved
and reconstructed.

First, we tested the DPM in the static operating mode. In
specific scenarios, we prefer to pay attention to the person in
a certain direction, minimizing interference from others. The
experimental setup remained the same as previously described.
In the environment, there were only two individuals. One
person stood at an angle of 30° relative to the center of the
DPM, while the other stood at - 20°, and both were positioned
3 meters away from the DPM’s center. Fig. 6(a) shows the
experimental schematic when the DPM is not working. In
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Fig. 6. DPM-aided Wi-Fi respiration detection for two people in a non-operating state. (a) is the experimental schematic diagram, and (c) and (d) are the
respiration signal and spectrogram extracted from CIS respectively. DPM-aided Wi-Fi respiration detection for two people in an operating state. (b) is the
experimental schematic diagram when the DPM beam is formed to 30°, (e) and (f) are the respiration signal and spectrogram extracted when the target is at
30° respectively, and (g) and (h) are the respiration signal and spectrogram extracted when the target is at-20° respectively.

this state, all meta-atoms of the DPM have the same coding
state, resulting in no beamforming effect. The measured CSI
time-domain curve and time-frequency curve are presented
in Fig. 6(c) and Fig. 6(d), respectively. These curves exhibit
rapid amplitude attenuation, unstable fluctuations, and an
ambiguous periodic pattern. At the start, there exist numerous
high-frequency components. This indicates the superposition
of the respiration signals from multiple targets, rendering
the respiration signals impure. Later, the signal amplitude is
small, and the fluctuations are irregular, making it difficult
to identify the respiration rate. At this time, the time-domain
signal waveform has severe aliasing, and it is impossible to
effectively extract the respiration signals of each target.

Subsequently, we controlled the DPM to direct the Wi-
Fi transmitting beam toward the 30° and- 20° directions,
respectively, and recorded the measured CSI time-domain
signals and time-frequency curves. The time-domain and time-
frequency curves of the target respiration information in the
30° and -20° directions are shown in Fig. 6(e), (f), Fig. 6(g),
and (h), respectively. The respiration rate of target T1 in
the 30° direction is detected to be 20 BPM, while that of
target T2 in the -20° direction is 15 BPM. Compared with
the mixed respiration signal waveform when the DPM is not
working, these two signals have higher amplitude stability and
slower attenuation, and are smoother and more regular overall.
The waveform has a clear periodicity and less noise, and the
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Fig. 7. DPM-aided Wi-Fi respiration detection for four people in Non-working and dynamic scanning mode. (a) and (b) are schematic diagrams of the two
states, respectively. (c) and (d) are the respiration signals and the spectrogram in the non-working state, respectively. (e)–(l) are the respiration signals and
spectrograms of the four targets extracted at -40°, -10°, 20°, and 40°.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3587995

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on August 15,2025 at 01:21:05 UTC from IEEE Xplore.  Restrictions apply. 



11

respiration rate is easier to identify, avoiding the previous
phenomena of severe initial fluctuations and later signal weak-
ening. Moreover, these two waveforms maintain good signal
quality at different angles, and the measurement stability and
anti-interference ability are significantly improved.

The experimental results show that the DPM in the static
operating mode can significantly enhance the respiration sig-
nals of the target in the specified direction while effectively
suppressing the interference from other directions. Compared
with the state when the metasurface is not working, the
respiration waveform sensed by CSI has a higher amplitude,
a more stable periodicity, and significantly improved signal
quality. When the metasurface is not used, the signal decays
rapidly and has a large amount of noise, making it difficult to
extract effective information in the respiration frequency band.
This experiment successfully validates the effectiveness of the
metasurface technology in enhancing the target respiration
signals and suppressing the interference of respiration signals
from irrelevant directions.

D. Multi-Person Respiration Detection under Dynamic Scan-
ning Mode

The above-mentioned experiments verify that, in the static
operating mode, the DPM can achieve directional respiration
perception and reduce the respiration interference from other
directions. Subsequently, we configured the DPM to the dy-
namic scanning mode. The experimental environment config-
uration is shown in Fig. 5(a). Four volunteers are positioned
at directions of -40°, -10°, 20°, and 40°, each at a distance
of 3 meters from the center of the DPM. According to the
optimized DPM space-coding scheme, the DPM controls the
Wi-Fi beam to continuously switch in the azimuth from -
50° to 50° (a total of 11 sub-beams with an adjacent angle
interval of 10°). The CSI packet-sending rate of the Wi-Fi
system is 2 ms, and the real-time switching rate of the DPM is
100 Hz. The system can quickly scan different directions and
simultaneously capture the respiration information of targets
in different directions, improving the real-time performance of
perception.

First, we verified the respiration-sensing ability of the
original Wi-Fi system in a multi-person scenario when the
DPM was in the off state, and Fig. 7(c) and Fig. 7(d)
show the CSI time-domain and time-frequency curves. The
time-domain signal shows distinct amplitude fluctuations and
irregular traits. This reflects the superposition of multiple
people’s respiration signals, making it arduous to directly
extract effective respiratory rhythms. This indicates that it is
extremely challenging to completely distinguish the respiration
frequencies of various individuals, and a clear-cut separation
of targets cannot be achieved. Under the traditional Wi-Fi
respiration-sensing method, there are significant signal inter-
ference and separation difficulties in CSI respiration sensing
in a multi-target scenario.

Subsequently, the DPM operates in the dynamic scanning
mode, and the experimental schematic diagram is presented
in Fig. 7(b). During the experiment, the DPM divides the
CSI of the Wi-Fi transmitter into multiple sub-signals in the

time domain and modulates the radiation directions of the sub-
signals for space re-distribution. The Wi-Fi signal is reflected
by the DPM and dynamically scanned in space according to
the time slices. The signals in a specific direction are enhanced
within the corresponding time slices, while the signals in other
directions are suppressed. The Wi-Fi Rx receives and extracts
the CSI data in different time slices through sampling and
then recombines them to restore the human target signals in
each angle interval. The respiration time-domain waveforms
and time-frequency curves in the -40°, -10°, 20°, and 40°
directions perceived by it are shown in Fig. 7(e-l), respectively.
In the time-domain diagram, the respiration signal waveforms
at different angles show high stability and regularity.

The signal amplitude variations extracted in each direction
are smooth, featuring clear periodicity without obvious inter-
ference. Compared to when the DPM is off, it can effectively
separate respiration signals in multiple directions. The signals’
observability and quality improve significantly. In the time-
frequency-domain diagram, the respiration signals at each
angle are concentrated in the corresponding frequency bands,
and the frequency lines are clear and non-overlapping, which
indicates that the DPM can effectively suppress other respi-
ration signals from non-target directions, thereby significantly
improving the resolution of the signals in the target direction.
Compared with the frequency overlap and aliasing problems
when the DPM is not used, the DPM successfully achieves
accurate discrimination of respiration signals in different di-
rections by our proposed system.

V. DISCUSSION

In this section, we explore the practical implications of the
proposed method’s applicability and effectiveness.
Maximum Supportable Targets Before Performance
Degradation:

The corresponding detection beam along this direction has
the gain of

G(θ) = N2 · sinc2
(
Nπd

λ
sin θ

)
(12)

where N is the column number of the DPM, d is the column
spacing, and λ is the operating wavelength. In our experiment,
N = 8, d = 2.5cm, λ ≈ 5.3GHz. For sufficient signal
separation G(θ1)/G(θ2) ≥ 10 dB between the target angle θ1
and other angle θ2, the formula shows the angular offset must
exceed 15°. Since the proposed system divides the space into
10◦ intervals, the two targets need to be spaced at least 20◦

apart. Therefore, the DPM’s configuration allows the system
to support up to 7 targets simultaneous detections before
performance degradation.
System Performance Under Non-Stationary Conditions:
Although human movement and posture changes may cause
signal fluctuations, the metasurface array captures dynamic
features in the time-frequency domain. Transient movements
or postural adjustments may induce short-term fluctuations in
respiratory signals, but when their spectral characteristics do
not overlap with the respiratory frequency band, they do not
substantially interfere with respiration detection.
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Scalability Analysis: The angle resolution and beamwidth ∆θ
can be expressed as

∆θ ≈ 0.886λ

Nd cos θ
(13)

where λ is the wavelength, N is the column number, and
d is the column spacing. The system’s directional support
capacity is constrained by the scale of the metasurface array
8 × 8, where physical limitations of beamwidth and angle
resolution in the current configuration define the upper bound
of multi-target detection. Scalability positively correlates with
the number of array elements N : increasing the array scale
theoretically narrows the beam width. It enhances angle res-
olution proportionally, allowing for the linear expansion of
supportable detection directions and target capacity. However,
hardware-level trade-offs exist inherently: higher angular reso-
lution compresses the detection range, while phase distortions
induced by target motion in dynamic scenarios significantly
degrade detection accuracy.

This study focuses on validating the architecture of DPM-
assisted Wi-Fi respiratory detection. Experiments conducted
in controlled indoor environments effectively minimize exter-
nal interference, demonstrating the feasibility of multi-target
respiratory monitoring with the proposed hardware setup.
Challenges such as multipath interference, Non-Line-of-Sight
(NLOS) obstruction, and co-channel signal interference remain
common across wireless sensing technologies, presenting clear
and promising directions for future exploration within the
framework of the proposed architecture.

Future research will explore adaptive multipath cancella-
tion algorithms in conjunction with the spatial modulation
capabilities of metasurfaces to enhance system robustness in
complex environments. On the hardware side, increasing the
number of meta-atoms and optimizing structural designs are
expected to improve angular resolution and spatial perception.
On the algorithmic side, exploration will include machine
learning–based adaptive beamforming and CSI denoising with
dynamic target analysis, enabling more accurate extraction of
vital signs and real-time tracking of moving individuals.

VI. CONCLUSION

In this paper, we proposed a Wi-Fi respiration detection
approach assisted by DPM. We designed and constructed a
respiration detection system based on a 2-bit DPM, which
utilizes the time and space modulation capabilities of the DPM
to assist the Wi-Fi system, enabling the detection of respiratory
signals from multiple people. First, we analyze the problem
that spectrum aliasing and interference render existing Wi-
Fi-based respiratory sensing methods ineffective when there
are multiple targets in the same environment. Subsequently,
we leverage the time and space modulation capabilities of the
DPM to slice the CSI at different time slots and modulate the
radiation directions of the CSI slices for space redistribution.
Finally, at the receiving end, the CSI is recombined to re-
store the CSI sensing signals at different angles. Experiments
demonstrate that this method can effectively separate and
detect the respiratory signals of four people. In the future,
our goal is to conduct further research on multi-person vital

signs sensing with the help of the DPM, especially in scenarios
involving moving individuals, such as walking or running. This
will further expand its potential applications in various real-
world environments.
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