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Abstract  Current Internet of Things (IoT) systems encounter substantial challenges in realizing ubiquitous sensing and
connectivity, characterized by constrained sensing coverage, prohibitive deployment costs, and energy inefficiencies inher-
ent in conventional digital-centric architectures. This paper presents RF Computing, an innovative paradigm that ex-
ploits radio frequency (RF) signals to simultaneously serve as information carriers and computational operands. By en-
abling direct information processing through RF signal manipulation in the RF domain, RF Computing effectively bypass-
es the limitations of traditional digital systems, delivering exceptional energy efficiency and superior performance charac-
teristics. We provide a systematic definition of RF Computing, classify its operational modalities, and showcase represen-
tative applications that highlight its transformative potential. The existing research landscape is organized into three prin-
cipal categories: information injection, transformation, and augmentation. Furthermore, we delineate critical open chal-
lenges, including the development of unified theoretical models, RF resource management strategies, analog-digital co-de-
sign methodologies, and programming frameworks for RF Computing systems. Finally, we propose promising directions to
propel this emerging field forward.

Keywords radio frequency (RF), analog computing, Internet of Things (IoT), sensing

1 Introduction discontinuous data acquisition, incomplete coverage,
and restricted spatial scope in capturing physical

Internet of Things (IoT), as a key technology that
bridges the cyber and the physical spacell: 2, has en-
abled remarkable research progress in the past
decades. With continuous advancements in sensing

and communication technologies, IoT applications

space information.

2) High Deployment and Maintenance Costs. The
expense associated with the IoT technology often out-
weighs its potential benefits, making it less economi-
cally viable for widespread adoption in many applica-

have been spread across various areas, including but
not limited to healthcare3-5, localizationl6-8], and
transportation(®-11,

The state of the arts in IoT, however, still falls
significantly short of achieving ubiquitous sensing and
connectivity. This is primarily manifested in three key
aspects.

1) Limited Sensing Capabilities
Space Coverage. Traditional sensing approaches re-
main constrained by the “discrete node-based cover-

and Physical

9

age” model, leading to persistent challenges such as

tions.

3) Inherent Energy Consumption Limitations. IoT
devices, predominantly based on digital signal pro-
cessing, face a fundamental lower limit in energy effi-
ciency. Efforts to reduce power consumption in-
evitably compromise performance, creating a direct
conflict with the increasing demands for high-perfor-
mance capabilities in future IoT applications.

We aim to identify the root causes behind the
aforementioned dilemma. From a system architecture
perspective, we observe that current IoT systems have
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long adhered to the design principles of general-pur-
pose computing systems. Having followed the path of
digital computing for nearly 80 years, we have grown
accustomed to processing and transmitting various
forms of data in the digital domain, using digital
methods to understand and solve all problems. How-
ever, this also entails inevitable overhead, costs, and
performance compromises/12/¥

Let us consider a basic IoT sensory data acquisi-
tion scenario. The standard workflow unfolds in the
following three stages. First, a sensor detects certain
information from the physical world, which is initial-
ly represented as an analog signal. This signal must
first be digitized for local storage and computational
processing. Next, the communication module on the
sensor converts the digitized information back into an
analog signal, modulates it according to specific com-
munication and networking protocol standards, and
transmits it. Finally, the receiving end captures the
analog signal, demodulates and converts it back into
a digital signal following the communication protocol,
and then passes it to the upper layers of the network
protocol stack for further processing. This sensing-
transmission-computation decoupled approach
evitably leads to information loss during intermediate

in-

processing, often accompanied by excessive device
costs, design complexity, and energy overhead, as is
the pervasive reality of IoT.

Recent advances across multiple disciplines sug-
gest a promising approach to addressing these chal-
lenges. Physicists have demonstrated that even sim-
ple physical systems can solve complex problems pre-

summation(a, b):

RF Computing
Combmer

1
: c=a+tb , ifa<h:
! returnc 1 return 0
Computational : : elseif o > b:
Functions 1 1 return 1

1 1
1 1
1 1
1 1
______ e D e e e e — = — 1

! .

summation(|E.|, |7,]): | comparison(|E,|,

1
1
\Eﬂ 1dB |[Ec|=2dB !
1
1
'L 1
1
1
1
1
1
|

HE>

1
1

1

1

1

1

1

oo
Implementation in 1
1

1

1

1

1

1

1

'

@

! comparison(a, b):

J. Comput. Sci. & Technol., July 2025, Vol.40, No.4

viously believed to require sophisticated computation-
al algorithms[!3l. Meanwhile, material scientists have
engineered advanced materials capable of performing
computations!417 or enabling novel sensing and com-
munication applications3: 18-25],
searchers have developed highly efficient, low-power
circuits and systems for RF (radio frequency) signal

In electronics, re-

processing26-31], Antenna engineering has seen break-
throughs in structural designs that optimize RF sig-
nal manipulation, enhancing both efficiency and relia-
bility in signal processing[” 9 26, 321 Additionally, hu-
man—cyber—physical computing and neuromorphic
computing systems have emerged to perform sensing
and communication based on analog information,
which mitigates digitization losses and reduces sys-
tem complexity[33-30],

From the above research progress, we can discern
a common trend: performing computations in the ana-
log domain is an effective approach. Although it may
involve a compromise in precision and speed, it often
enables the resolution of problems— at much better
efficiency and significantly lower cost and energy
overhead— that traditional computing systems can
only tackle at a much higher expense.

Based on the above understanding, we propose
RF Computing, a new paradigm that uses RF signals
as both information carriers and operands, so that in-
formation processing and transformation are achieved
by manipulating these signals directly in the RF
space. The examples in Fig.1 shows that typical com-
putational functions can be realized with RF Comput-
ing based implementations. A combiner can work as

: subset_selection(F[], high_f, low_f):

| subset = []; highpass = []; lowpass =[]
1 for fin F:

: if /> high_f: highpass.append( /)

1 for f'in highpass:

: if /< low_f: lowpass.append( /)

| subset = lowpass

! return subset

subset_selection(F, cutoff1, cutoff2):
F: :[ﬂ f(

High Pass Filter
\[\» { }cutoffl ~150 Hz

Comparator Low Pass Filter
High Level /14 =100 Hz, cutoff2 ~250 Hz
4
By 115
Comparator
(b) (©

Fig.1. Typical examples of computational functions that RF Computing can realize. (a) Summation. (b) Comparison. (c¢) Subset se-

lection.

@Kelly P H. “Turing Tariff” reduction: Architectures, compilers and languages to break the universality barrier, 2020. https://
www.doc.ic.ac.uk/~phjk/Presentations/2020-06-24-DoCLunch-PaulKelly-TuringTaxV04.pdf, July 2025.
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an addition function by combining the two input sig-
nals. A comparator can perform a branching function.
Cascaded high and low pass filters can execute the
function of subset selection. Moreover, by delicately
integrating these functions and corresponding RF de-
vices within an RF Computing system, more ad-
vanced algorithms can be achieved, such as search,
optimization, and classification.

The concept of RF Computing is built upon a collec-
tive foundation of decade-long research advancements
across various aspects of the IoT field, such as RF-bas-
ed wireless sensing[3: 4 8 20, 37-39] backscatter(28-30, 40-44]
and cross-technology communication (CTC)45-50 51],
These research efforts have progressively revealed the
dual potential of RF signals as both information carri-
ers and computational operands, while simultaneous-
ly advancing the RF signal processing capabilities of
ToT edge devices.

RF Computing aims to adopt a hybrid digital-
analog computational approach, achieving a unifica-
tion of high performance and low overhead, thereby
advancing IoT systems toward the goal of ubiquitous
sensing and connectivity. There are many open prob-
lems in this emerging research area. Thus, in the rest
of this paper, we first present the basic definitions
and concepts of RF Computing in Section 2. Section 3
introduces the status quo of RF Computing. In Section 4,
we discuss the potential research space. Section 5 con-
cludes this paper.

2 RF Computing: Definition and Concepts

Since RF Computing uses RF signals as the infor-
mation carrier and operand, we start with presenting
the basic properties of RF signals. Following a formal
definition of RF Computing, we illustrate how infor-
mation can be carried and processed with RF Com-
puting operations.

2.1 Definition

As a kind of electromagnetic (EM) wave, an RF
signal has several different domains to carry informa-
tion. Specifically, according to Maxwell’s equations/52,
the simplest RF signal (i.e., monochromatic plane EM
wave) can be formulated by

E(n t) = F, cos(?r —wt + (bo)?,

N
where FE, is the amplitude, k is the wave vector in-
dicating the propagation direction of the signal, w is
the angular frequency which is proportional to the

frequency f (e.g., w=2mnf), ¢, is the initial phase,
and € is the unit vector representing the polariza-
tion of the signal. Fig.2 illustrates the different five
domains of an EM wave in the monochromatic plane.

A

A

Fig.2.

wave.

Different domains of the monochromatic plane EM

Each of these five domains can convey distinct in-
formation, a fundamental principle underlying mod-
ern communication technologies. Unlike conventional
approaches that first convert information into digital
representations, RF Computing introduces a novel
paradigm of information processing through direct
transformations of RF signals within these domains.
Building on this principle, we formally define RF
Computing as follows.

Definition 1 (RF Computing). RF Computing is a
computational paradigm that processes information
through direct manipulation of RF signals within the
RF space. Here the RF space refers to the space
erist and propagate. In this
paradigm, RF signals serve as both information carri-
ers and computational operands simultaneously.

where RF  signals

2.2 Computing Operations

A computing process of RF Computing can be for-

mulated as
Eout = H(I) * Eiln

where E)m and ﬁom are the incident and outgoing
RF signals, respectively, and H(x) refers to the com-
puting process. Note that this computing process can
be viewed as an analogue of an instruction set in tra-
ditional computing systems, either logical or arith-
metic, to perform calculation tasks in the RF space.
According to the number of parameters in H(z), RF
Computing operations can be categorized into two
types: basic operations and composite operations.
Basic operations are operations that transforms
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RF signals in only one domain, which can be divided
into the following five categories.

1) Amplitude Transformation. RF signals’ ampli-
tude can be manipulated by various RF Computing
devices, e.g., power amplifiers and attenuators. This
basic operation can be expressed as

E.. = H(E)|) * En.

2) Frequency Transformation. The frequency of
RF signals can be up-converted or down-converted by
mixers. Also, the frequency of wideband signals can
be cut off or filtered by using dedicated filters or fre-
quency-selective devices. This operation can be ex-
pressed as

Eout = H(f) * Ein-

3) Propagation Direction Transformation. RF sig-
nals can be manipulated to propagate towards any di-
rection. This operation is typically achieved by trans-
mission lines, antenna arrays, or gradient refraction
materials, and can be formulated as

B - HE)+ E..

4) Phase Transformation. The phase of RF sig-
nals varies within [0, 27|, which can be manipulated
by delay lines, phase shifters, and many other RF
Computing devices. This operation can be expressed
as

B = Ho) * Ea.

5) Polarization Transformation. The polarization
of RF signals can be transformed between different
types, including linear, circular, and elliptical polar-
ization. This operation can be achieved by polaroids
and can be formulated as

B - H@)+ E.

Composite operations are the operations that
transforms RF signals in more than one domain. A
composite operation can be achieved in one shot or by
a cascade of multiple basic operations. Both basic op-
erations and composite operations are performed by
RF devices in the RF space (where RF signals exist
and propagate).

Information processing and exchange occur
through transformations of RF signals, whether with-
in the aforementioned five domains or through con-
version from/to other types of information carriers. In
the latter case, we define these conversions as the In-
put and Output of an RF Computing process. Typi-

J. Comput. Sci. & Technol., July 2025, Vol.40, No.4

cally, input devices include antennas, computer mod-
ules, and other devices that can produce EM radia-
tion. Output devices include antennas, piezoelectric
materials, and other devices that can convert EM
waves into other information carriers, e.g., voltage or
currents. Input and output operations can be formu-
lated as:

—
E111:-[—-’(|-E1()|7z>7 w, k7¢(])*En7

%
Fout = H(|E0|;?7wa k 7¢O) * Eout7

where F}, and F,, are information carriers outside the
RF space. It is particularly noteworthy that through
the formal definition of input/output operations, in-
formation processed via RF Computing can be seam-
lessly loaded from and stored to other information
media. This preserves adherence to the fundamental
compute-store architectural characteristic even in RF
Computing integrated systems.

2.3 Typical Examples

Fig.3 presents two representative examples of RF
Computing. These examples demonstrate the poten-
tial advantages of RF Computing as a viable alterna-
tive for solving traditional computing problems.

A typical category of examples is frequency infor-
mation extraction in IoT applications. This operation
is one of the most widely used operations in sensing
and communication tasks, such as the Doppler fre-
quency spectrum analysis in human activity recogni-
tion and demodulation in frequency division multi-
plexing communication. As shown in Fig.3(a), taking
broadband signals as the input, the traditional ap-
proach first samples the signals and then performs a
discrete Fourier transform (DFT) on the sampled da-
ta. By contrast, RF Computing exploits analog RF de-
vices (e.g., leaky-wave antennasl3: 54 or SAW filters[32))
to directly transform the information in the frequen-
cy domain to other domains for easy extraction. In
terms of the end-to-end energy consumption, RF
Computing can achieve more than 99% energy reduc-
tion. For instance, extracting frequency information
from LoRa signals via the traditional approach con-
sumes 40 mW, whereas that of the RF Computing im-
plementation consumes less than 100 pW0B2, demon-
strating a reduction of approximately 99.75%.

Fig.3(b) illustrates another example of solving the
matrix multiplication problem. In a traditional digi-
tal implementation, one must fetch each weight and
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Fig.3. Cases of computing process using the methodology of RF Computing. (a) Spectrum analysis based on discrete Fourier trans-
form or a leaky wave antenna. (b) Matrix multiplication based on CPU or memristor arrays. ADC: analog-to-digital converter.

activation from memory into a processor, perform the
multiply-accumulate operations, and then write the
back. This process
read/write cycles and thus significant speed over-
heads (e.g., 1 ms). Differently, RF Computing can ex-
ploit a memristor array to accomplish this problem:
each memristor’s
weight, and when an incoming RF signal is broadcast
across the array, the resulting currents are inherently
summed along each column. As such, the matrix mul-

results introduces frequent

conductance encodes a matrix

tiplication problem implemented by RF Computing
can be accomplished almost instantaneously (e.g., 1 ns)
in the RF spacel®5: 56],

2.4 Comparison with Traditional Computing

Table 1 compares RF Computing with traditional
computing across multiple dimensions, including com-
putation paradigm, information carrier, computation-
al core, precision of computing, and energy efficiency.
There may be other dimensions worthy of compari-

Table 1.

son, while we believe the dimensions listed in the ta-
ble suffice to delineate the distinctive characteristics
and contrasts between RF Computing and tradition-
al computing. Nevertheless, an RF Computing sys-
tem still fundamentally adheres to the existing archi-
tecture (e.g., the Von Neumann model), albeit intro-
ducing innovations in computational methodologies.

Based on the above understanding, we broaden
our perspective by examining recent advances in IoT-
related research, discussing how different approaches
achieve RF Computing and exploring its potential ad-
vantages.

3  Status Quos of RF Computing

There have been numerous existing studies that
embody the novel concept of RF Computing®7 68, Ac-
cording to the function of RF Computing in a specif-
ic study, we classify the literature into three cate-
gories.

1) RF Computing for Information Injection. Com-

Comparison Between RF Computing and Traditional Computing

Computational Paradigm Information Carrier

Computational Core Precision of Computing Energy Efficiency

Traditional Digital Binary bit
computing
RF Computing Hybrid digital-analog RF signal

Processor High

RF device

Relatively low

Relatively low High
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pared with other information carriers, RF signals are
ubiquitous and exhibit a favorable propagation capa-
bility. This capability makes RF signals particularly
suitable for information injection and propagation. In
this category, information is introduced into the RF
space via modality conversion, and translated from
non-RF information carriers into RF signals[® 27, 69-72],

2) RF Computing for Information Transforma-
tion. Different RF domains entail different informa-
tion representation capabilities and processing over-
head. In this category, information is converted and
migrated from one domain of RF signals to another.
By transforming information into a more suitable do-
main, higher computing efficiency and lower over-
head can be achievedl[” 26, 32, 73-75],

3) RF Computing for Information Augmentation.
Information augmentation is the computing process of
enriching the information injected into RF signals.
When the information is too weak to support reliable
communication or sensing, one may harness the phys-
ical properties of RF signals to amplify the subtle
variations within the RF space, thereby augmenting
the injected information3: 4 37, 76, 77,

The rest of this section will review the existing
work in the above-mentioned categories.

3.1 RF Computing for Information Injection

As a type of information carriers, RF signals can
embed information we want to transmit into differ-
ent domains. RF Computing harnesses the natural
propagation capabilities of RF signals to enable ubig-
uitous information injection. As such, information can
be seamlessly injected, transmitted, and accessed
across the RF space. Moreover, RF Computing direct-
ly processes RF signals in the RF space, without re-
quiring analog-to-digital converters (ADCs) to trans-
form RF signals into the digital space for information
embedding. Thus, the power consumption and sys-
tem complexity will be exceptionally reduced com-
pared with conventional digital computing. These fea-
tures provide RF Computing based information injec-
tion with significant advantages in terms of energy ef-
ficiency and cost-effectiveness.

The representative RF Computing technique for
information injection is backscatter. At its core,
backscatter tags perform basic or composite opera-
tions and inject information on the incoming RF sig-
nals from the transmitter (Tx), without the need of
sampling or generating RF signals. Existing backscat-

J. Comput. Sci. & Technol., July 2025, Vol.40, No.4

ter technologies typically inject information into the
three domains of RF signals, that is amplitude, phase,
and frequency. The corresponding information injec-
tion techniques are On-Off Keying (OOK), Phase
Shifting Keying (PSK), and Frequency Shifting Key-
ing (FSK). 1) OOK is usually achieved by changing
the state of RF Computing devices between reflect-
ing and absorbing the incoming RF signals. This type
of technique is mostly used in RFID systems/4, and
further be extended to ambient and Wi-Fi backscat-
ter28l. 2) PSK is usually achieved by building a set of
delay lines with different lengths or exploiting code-
word translation??) to enable different phase shifts,
e.g., BPSK and QPSK. 3) FSK is usually achieved by
shifting the frequency of the backscatter signals to an-
other frequency band without collision with the in-
coming signals[3.

Different from many efforts performing basic oper-
ations and only injecting information into one do-
RF-Transformer2”7  builds
backscatter radio to inject information into multiple
domains of the incoming RF signal. Specifically, RF-

main, a programmable

Transformer achieves this by employing a dedicated
backscatter tag to perform the composite operation
by altering both the phase and amplitude of signals.
As illustrated in Fig.4, this capability allows IoT de-
vices to synthesize different types of protocol-compli-
ant backscatter signals sharing radically different
physical-layer designs. Besides, RF-Transformer retains
ultralow power consumption, which is 7.6x—74.2x less
than active counterparts, such as Wi-Fi, Bluetooth,
and LoRa.

LoRa

Sinusoidal @

Carrier OQPSK .
e e\ zigbee
—_ FSK 9

RF-TransformeerVV\/\/V\/\/ Bluetooth

i o

Fig.4. RF-Transformer backscatter design. CCS: Chirp Spread
Spectrum, OQPSK: Offset Quadrature Phase Shift Keying,
QAM: Quadrature Amplitude Modulation.

However, when it comes to mmWave band, tradi-
tional information injection techniques may not func-
tion well. The main reason is that due to the high-fre-
quency feature of the mmWave signals, backscatter
signals will experience great path loss and exhibit lit-
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tle energy. The intuitive method is employing phased
array antennas to focus the signal energy. Unfortu-
nately, phased arrays are power-hungry, thus they are
unaffordable for low-power IoT devices.

mmTagl® tackles this problem by exploiting an
RF Computing device, named Van Atta Array
(VAA), to perform a composite operation by altering
the phase, polarization and propagation direction of
incident mmWave signals. As Fig.5 shows, a basic
VAA can introduce phase offsets to the incident sig-
nals, so that the phase of backscatter signals is re-
versed. As such, backscatter signals will be retro-re-
flected. To inject information into RF signals, mm-
Tag adopts a simple RF switch to perform PSK and
reverses the polarization of backscatter signals to
avoid self-interference.

_
- -
-
Backscatter <
. - .
Signal P - Incident
- - .
-7 - Signal
- T -
o -
-
- -
- -
0 1 2 3 4 5

Fig.5. VAA used in mmTag(®.

Millimetrol™ focuses on the problem of how to
distinguish information injected by different tags. Mil-
limetro finds that when tags inject information based
on the OOK scheme, the backscatter signal will be
converted to a sinc function after range-Doppler FFT,
as Fig.6 illustrates. The primary frequency compo-
nent of the sinc function is equal to the modulation

fA Tx Chirp
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frequency. Thus, Millimetro assigns unique OOK fre-
quencies to different tags for distinguishing their in-
jected information.

Different from the above-mentioned information
injection schemes requiring active components in RF
Computing devices, RoSl% introduces another passive
information injection method. RoS constructs differ-
ent passive VAA stacks, where the information is rep-
resented by the layout of these stacks and can be in-
jected into Radar Cross-Section (RCS) of backscatter
signals. RoS can configure the information by adjust-
ing the number and the layout of VAA stacks.

3.2 RF Computing for Information
Transformation

While information can be injected into different
domains of RF signals, the associated costs of process-
ing and extracting the information vary significantly
depending on the domains, and computing devices in-
volved. Different RF Computing devices exhibit dis-
tinct efficiencies and sensitivities when operating in
specific domains. As such, strategically transforming
information between domains can unlock higher com-
putational efficiency and lower overhead. Pioneering
research in RF Computing has already demonstrated
the potential of information transformation across dif-
ferent domains of RF signals, which we will intro-
duce in the followings.

Saiyan®? transforms information from the fre-
quency domain to the amplitude domain to enable
signal demodulation on LoRa backscatter tags. Tradi-
tional digital approaches rely on operations such as
downconversion, sampling, and FFT, which together
consume over 40 mW-—an impractical cost for low-
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Fig.6. Concurrent tag localization and identification in Millimetro.
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power backscatter devices. In contrast, Saiyan repur-
poses a surface acoustic wave (SAW) filter to per-
form signal differentiation, effectively transforming
the frequency-domain information (i.e., linear frequen-
cy variation) into amplitude-domain information (i.e.,
linear amplitude variation), as illustrated in Fig.7. By
doing so, the tags can decode the LoRa signals by
simply detecting the peak amplitude with the enve-
lope detector. This process avoids using power-inten-
sive devices (such as downconverters, ADCs) and con-
trols the system’s power consumption at around 90 uW.

BIFROST!" transforms information from the fre-
quency domain to the propagation direction domain
to enhance the availability of indoor WiFi localiza-
tion. Specifically, BIFROST exploits leaky wave an-
tennas (LWAs) to guide WiFi signals with different
frequencies to different directions based on the disper-
sion effect (shown in Fig.8). Thus, a WiFi device can
calculate its location by simply analyzing the spec-
trum of the received signals with the deployed LWAs,
without the need for multiple WiFi access points.

MilBack[®l also employs LWAs to perform infor-
mation transformation from the propagation direc-
tion domain to the frequency domain. Due to the reci-
procity of LWAs, the frequency and propagation di-
rection of the signal received by an LWA are coupled.
Thus, MilBack integrates an envelope detector for the
tag to identify the highest amplitude peak of the inci-
dent FMCW signal, where the time of the peak indi-
cates the frequency, and in turn, the propagation di-
rection of the signal. This approach enables demodu-
lation on low-power tags without requiring complex
digital processing.

3.3 RF Computing for Information
Augmentation

Due to their ubiquitous nature, RF signals can in-
teract with a variety of objects, ranging from RF
Computing devices to human bodies. Thus, diverse

| |
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types of information can be injected into RF signals
during these interactions. However, the information is
sometimes too weak to be distinguished from the
noise or interference. As a result, the information is
hard to use for supporting reliable communication or
sensing. In these cases, dedicated RF Computing de-
vices can be implemented to augment the injected in-
formation by exploiting the inherent physical proper-
ties of RF signals. Existing efforts demonstrate that
the augmentations can amplify the subtle variations
within the RF space and enable a more robust extrac-
tion of the injected information.

Meta-Sticker3” develops a metamaterial sticker
operating in the THz band to augment information
regarding the ripeness of fruits. This information is
hard to extract after THz signals interact with fruits,
as THz signals attenuate significantly in water. To
augment this information, Meta-Sticker attaches a
metamaterial onto the fruit surface. Changes in the
fruit’s chemical composition affect the resonant fre-
quency of the metamaterial, rendering its response
highly sensitive to THz signals. This information aug-
mentation not only amplifies the injected information
about ripeness but also enables more precise and reli-
able sensing.

Similarly, MetaBioLiq designs a wearable meta-
surface to augment information about human sweat
by harnessing the resonance of the sweat liquid when
interacting with high-frequency RF signals. Since mi-
croliters of sweat have a negligible presence on RF
signal reflection, the injected information is difficult
to be accurately extracted. Thus, MetaBioLiq em-
ploys a metasurface that resonates with the thin lay-
er of sweat in contact with the skin, thereby signifi-
cantly amplifying the information injected into the in-
coming mmWave signals.

ThermoWavel3l proposes a metamaterial to aug-
ment temperature information. In ThermoWave, the
metamaterial can promptly equilibrate to the temper-
ature of the attached target object, as Fig.9 illustrates.

SAW
—
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Fig.7. SaiyanP? exploits a SAW filter to transform the information in the frequency domain to that in the amplitude domain.
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As the metamaterial’s temperature changes, its molec-
ular alignment shifts due to thermal expansion. This
change in molecular alignment directly influences the
frequency shift of the incoming mmWave signals and
further augments the injected temperature information.

4 Open Problems and Future Directions
4.1 Unified Modeling and Quantification

To fully realize the potential of RF Computing
and evolve it from fragmented innovations into a co-
hesive technological system, breakthroughs in founda-
tional theories are critical. While nearly any RF-based
signal transformation can be interpreted as a form of
computation, not all such operations are practical or
efficient, especially in IoT applications. Thus, the key
challenge lies in establishing a unified model for RF
Computing that enables precise quantification and
evaluation.

This raises several fundamental questions. How
should we characterize the information-carrying ca-
pacity of RF signals as computational objects? Can
we develop a generalized RF Computing model that
defines the computational capabilities of all partici-
pating RF devices? The definition in Section 2 de-
fines RF Computing operations, which provides a
starting point for modeling computing capabilities.
However, unlike discrete computing, RF signals are
continuous and high-dimensional, requiring more than
just a classification of basic or composite operations.
A robust model must also quantify how these opera-
tions modify signal characteristics.

Equally important is accounting for computation-
al costs, including energy consumption, latency, and
hardware expenses, all of which must be taken into
account. Only then can we properly assess and com-
pare different RF Computing approaches.

With the advancement in computational electro-
magnetics and RF integrated-circuit (RFIC), future
exploration on RF device models and signal propaga-
tion models could help establish and refine the RF
Computing model with realistic and multidimension-
al design considerations.

With such a model in place, we will achieve two
key objectives. 1) Task-device matching: given an RF
Computing task’s input and output, determine which
devices can perform the required operation. 2) Cost-
optimized selection: when multiple devices qualify,
evaluate them based on computational efficiency to
identify the optimal option.

4.2 Generation and Discovery of RF
Resources

As the fundamental building blocks of RF Com-
puting systems, RF resources must be carefully engi-
neered or selected. They are not always readily avail-
able or inherently suitable for computational tasks.
For example, in long-range wireless sensing, informa-
tion is often modulated in the frequency domain to
combat channel fading, ensuring that signal features
remain detectable for subsequent processing. In RF-
based localization, wider signal bandwidth is pre-
ferred to achieve higher resolution, enabling precise
RF-based distance measurement.

Therefore, how to acquire or tailor RF resources is
a crucial problem. Two primary approaches exist.
One of them is active generation, namely synthesiz-
ing customized RF signals to meet specific computa-
tional requirements. For instance, techniques from in-
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tegrated sensing and communication (ISAC) wave-
form design can be employed to jointly optimize RF
signals to satisfy data transmission, sensing, and com-
putation requirements in RF Computing. Passive dis-
covery of RF resources is the other approach. The
term passive is to emphasize that the goal of detect-
ing and leveraging existing RF resources should be
achieved under strict constraints, particularly low en-
ergy consumption. Meanwhile, passive discovery faces
a unique hurdle: an RF device generally adheres to
standardized communication protocols, whereas the
signals to be discovered may follow different formats.
It is clearly challenging to detect, identify, and ma-
nipulate such signals with a standardized device.
Cross-technology communication research in the IoT
community5-51 has offered partial solutions, while a
robust framework for interoperable RF resource dis-
covery remains an open problem.

4.3 Computing in the Analog Domain

Undoubtedly, analog computing represents the
most innovative aspect of RF Computing. Existing re-
search has fully demonstrated its outstanding advan-
tages, such as low energy consumption and high effi-
ciency. However, analog computing also has inherent
limitations, including limited precision and a restrict-
ed computable range.

The issue of limited precision is not an absolute
drawback. The key research issue lies in how to solve
practical problems with limited-precision computa-
tion. Notably, many IoT sensing applications do not
demand high precision of computation. Thus it is in-
deed crucial to align application requirements with
the achievable capabilities of RF Computing. This of-
ten involves efforts to adapt problem-solving ap-
proaches to leverage the strengths of analog comput-
ing while mitigating its weaknesses. For instance, one
can integrate multiple redundant elements to correct
the errors brought by low-precision analog computing,
thereby achieving an overall precision close to that of
conventional digital systems[™. Alternatively, a tai-
lored deep-learning framework can be trained to mod-
el analog non-idealities, such as component mismatch-
es or noise, so as to preserve high-precision perfor-
mance even when operating on inherently low-preci-
sion hardware™. These examples demonstrate that,
by combining these hardware and algorithm strate-
gies, computing in the analog domain can deliver digi-
tal-comparable precision to support many applica-
tions.
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As for the constrained computable range, it is an
easily overlooked challenge. Analog computing is built
upon the physical properties of RF components. It is
worth noticing that such physical properties may vary
with input signals, leading to computational perfor-
mance that fluctuates with input conditions. Such
variability is generally undesirable, as it makes it dif-
ficult for system designers to design deterministic al-
gorithms, and program behavior may become unpre-
dictable due to hardware uncertainties.

The work in [70] provides a concrete example: the
researchers attempted to wuse varactor diodes to
achieve linear conversion from the capacitance of var-
actor diodes to the output signal phase by adjusting
the input voltage. However, this linearity only holds
within a limited capacitance range, as Fig.10 illus-
trates. Thus, the input voltage range is also bounded,
which can be viewed as a restricted computable
range. Designing analog computing schemes that ef-
fectively utilize this limited operational scope re-
mains a highly challenging task.

0=\ 0.1 pF

10? 10° 10*

C (pF)

Fig.10. Nonlinearity between the capacitance of varactor
diodes and the output signal phase.

To address the above-mentioned challenge, solu-
tions could come from the area of circuit systems. For
instance, at the circuit level, designers can optimize
topologies, carefully model the parasitic capacitance
and resistance, and insert dynamic compensation net-
works to broaden the linear region. By fully leverag-
ing circuit-system techniques, RF Computing can ful-
ly enjoy the energy and latency benefits within a reli-
ably bounded operational domain.

4.4 Programming of an RF Computing
System

Through our previous discussion, we may reach a
consensus that both digital and analog computing
have their respective advantages and limitations.
Therefore, future RF Computing systems will likely
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be built on a hybrid computing architecture with
both digital and analog components. Techniques such
as analog-digital partitioning, dynamic voltage and
frequency scaling, and hardware-software co-design
enable precise allocation of tasks between analog
front-ends and digital processors. The design goal of
such a system is to accomplish specified tasks or solve
targeted problems. Such a task typically involves
transforming a given input signal into the desired out-
put signal. Interestingly, with the introduction of
analog computing, there are often multiple feasible so-
lutions to achieve this objective. The examples in
Figs.3 and 7 have indicated this fact. For program-
ming of an RF Computing system, the key of research
lies in the methodology of developing such solutions,
which involves answering the following three questions.

1) Computational Methodology and Workflow. For
a given task, what are the computational methods
and processes? How do we determine which parts of
the system should be handled by digital components
and which by analog components, and what are their
respective computational functions?

2) Performance Metrics and Resource Con-
straints. While fulfilling the computational require-
ments, how should performance targets and resource
constraints be quantified? Furthermore, how can
these requirements and constraints be decomposed
and translated into specifications for each digital and
analog component?

3) Component Selection and Optimization. Under
the conditions of meeting functional, performance,
and resource constraints, what components are avail-
able, and how should they be selected?

To answer the above questions, one can draw on
circuit-system expertise to model RF Computing as a
modular signal-processing chain. A high-level process
is as follows: first, use block-diagram and network-
theoretic abstractions to partition analog and digital
tasks; next, quantify performance metrics and re-
source constraints; and finally, validate through co-
simulation and iterative optimization. Based on this
programming and modeling framework, RF Comput-
ing operations can be systematically generalized and
composed into a broad class of well-defined and pur-
poseful computations.

4.5 Debugging and Testing of an RF
Computing System

Debugging and testing such a hybrid RF system

presents another intriguing challenge. Since the pro-
gramming process involves both algorithm design and
hardware selection, the system’s behavior depends on
the interplay of these two aspects. When functional
issues arise, the first critical step is to determine
whether the problem lies in the algorithm or the
hardware.

Debugging tools and testing platforms are impor-
tant in regard to the complexity of the above prob-
lems, while the primary challenge here is the lack of a
robust method to decouple these two factors for iso-
lated analysis. If the issue stems from the algorithm,
it may require adjustments—or even a complete re-
design— of the solution. On the other hand, if the
problem is hardware-related, further testing is needed
to discern whether it arises from a functional defect
(e.g., a faulty component) or an incorrect selection
during the hardware configuration phase.

Many other important directions exist, though we
can only briefly outline them here due to space con-
straints. With the advancement of RF Computing,
IoT applications will reach new heights. By fully
leveraging the potential of RF Computing, we may
utilize limited signal feature spaces to carry more in-
formation, enabling integrated sensing-communica-
tion-computing or multi-purpose sensing applications.

At the cross-disciplinary areas, numerous exciting
challenges await exploration, including but not limit-
ed to uncovering the RF Computing capabilities of
existing materials and developing new materials
specifically optimized for RF Computing.

4.6 Initiatives for Community Building

Despite rapid advances in RF Computing, re-
search efforts in this domain remain fragmented. The
lack of standardized RF devices and evaluation
methodologies severely compromises reproducibility
and impedes fair comparison across studies. Com-
pounding this issue, researchers frequently develop
proprietary hardware platforms, resulting in frag-
mented silos and unnecessary duplication of efforts.
To address these challenges, we advocate for commu-
nity-wide adoption of open datasets and shared re-
sources as fundamental enablers of progress.

Standardized Hardware Platforms. The communi-
ty should collectively develop and maintain a library
of standardized RF components, including RF front-
ends and backscatter tags, accompanied by compre-
hensive design documentation. Such standardized
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platforms would enable researchers to isolate algorith-
mic performance from hardware-specific variations
while eliminating redundant development efforts.

Unified Evaluation Framework. A critical need ex-
ists for an open-source evaluation toolkit encompass-
ing data collection, preprocessing, and performance
measurement capabilities. This framework would en-
sure consistent methodology application and enable
direct cross-study comparisons.

Open Datasets Initiative. We strongly encourage
researchers to contribute RF datasets spanning multi-
ple frequency bands (sub-6 GHz to mmWave), di-
verse propagation environments (urban, indoor,
rural), varied mobility scenarios, and different proto-
col stacks. Well-annotated, publicly available datasets
will significantly enhance reproducibility and acceler-
ate knowledge sharing.

Benchmarking Standards. The community must es-
tablish clearly defined benchmark tasks targeting fun-
damental RF Computing challenges—including power
efficiency, throughput, and latency. These should in-
corporate standardized
evaluation pipelines, and performance baselines. Such

benchmarks will provide meaningful comparison met-

reference implementations,

rics for emerging RF Computing approaches while
promoting best practices in experimental design.

5 Conclusions

RF Computing has emerged as a revolutionary
approach that seamlessly integrates sensing, commu-
nication, and computation through native RF signal
manipulation. By processing information directly in
the RF domain, this paradigm offers unprecedented
energy efficiency and performance advantages over
traditional digital systems. However, significant chal-
lenges remain in developing unified theoretical mod-
els, establishing standardized evaluation methodolo-
gies, and creating robust hybrid analog-digital archi-
tectures. The research community should focus on
collaborative efforts to build shared resources, bench-
mark tasks, and open datasets to accelerate progress.
As these foundational elements fall into place, RF
Computing is poised to transform IoT applications,
enabling ubiquitous, low-power smart systems while
opening new research avenues in electromagnetics,
materials science, and edge computing. The realiza-
tion of this potential will require sustained interdisci-
plinary collaboration and systematic investigation of
the identified open problems.
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