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Abstract—As an emerging technology, WiFi sensing has gar-
nered widespread attention in recent years. However, due to lim-
itations in WiFi bandwidth and hardware capacity, multi-target
sensing with WiFi remains an unresolved issue. In this paper,
we present SLINGSHOT, a first-of-its-kind approach for multi-
target WiFi sensing enabled by metasurface. SLINGSHOT exploits
a metasurface’s ability of beam scanning to periodically scan
among targets in a high frequency, so their sensing signals can
be separated in the time domain. However, the WiFi-initiated and
the metasurface-initiated signals will interfere with each other,
which could significantly degrade the sensing accuracy. Moreover,
the WiFi devices and the metasurface operate in a distributed
manner, so the inherent clock offset and clock drift among them
make it difficult to accurately separate the sensing signals of the
targets. To address the above challenges, SLINGSHOT leverages
the metasurface’s ability of phase shifting to cancel interfering
signals and designs a passive clock synchronization scheme to
synchronize the metasurface and WiFi devices. We implement
SLINGSHOT and evaluate it under various settings. Results show
that SLINGSHOT can sense up to 8 targets. Respectively com-
pared to the state-of-the-art methods, SLINGSHOT has 6.75 %
higher mean accuracy in activity recognition and 58.34 % lower
mean error in respiration monitoring.

Index Terms—Metasurface, WiFi Sensing, Multi-Target

I. INTRODUCTION

Past decades have witnessed the rapid development of
wireless sensing technologies [1]-[4]. Benefiting from the
ubiquitous WiFi infrastructures, WiFi sensing has become
the mainstream and attracts increasing attention [5]-[7]. One
can estimate the location by mapping the WiFi Channel
State Information (CSI) or Received Signal Strength Indicator
(RSSI) with the corresponding location [8]-[10]. One can also
recognize human activities by analyzing the Doppler frequency
shift of reflected signals [11], [12].

In spite of the positive progress, most of the existing
works can function well with a single target, but suffer severe
performance degradation in multi-target sensing scenarios.
The main reason is that the signals reflected by multiple
targets superimpose at a WiFi Rx, which usually doesn’t
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Figure 1: The high-level principle of SLINGSHOT.

have sufficient signal bandwidth and hardware capacity to
distinguish those signals, and therefore the targets. However,
there is a widespread demand for multi-target sensing, and
even associating each target’s location with its sensing results,
for example, location-aware applications like smart homes.

To deal with the above issue, some works exploit signal
processing techniques like blind source separation [13] and
virtual sample generation [11] to extract sensing information
from the superimposed signals, assuming that the signals from
different targets exhibit distinct features or that these features
are known based on specific domain knowledge.

Another set of existing works proposes to increase the
available sensing information. For instance, using multiple
WiFi access points (APs) or a large antenna array for multi-
target sensing [5], [12], [14], [15], however, at the cost of
complex control over WiFi systems. Besides, the near-field
domination effect is exploited to distinguish each target from
the others by using its adjacent smartphones [16], [17], while
the sensing range depends on the capacity of smartphones.

Recent works [18]-[20] exploit metasurface to perform
beamforming for different targets to separate their sensing
signals. Even so, these methods typically rely on dedicated
incident signals (i.e., single-tone [18], [20] or FMCW [19]),
which aren’t compliant with WiFi standards.

We in this paper present SLINGSHOT, a novel metasurface-
enabled approach for multi-target WiFi sensing. Leveraging its
inherent capability of beamforming, a metasurface is employed
to reflect the incident WiFi signals to a specified direction.
When the direction of reflection keeps switching, the beam of
metasurface periodically scans different directions at a very
high frequency, namely beam scanning. In each beam scanning
cycle, the targets will reflect the beams at different time, so
the beams can be respectively mapped with the targets. After
a WiFi Rx receives the reflected signals, the signals can be
accordingly mapped to the beams, and in turn, the targets, as
illustrated in Fig. 1. Thus, we can separate the signals in the
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time domain, and achieve multi-target sensing.

To implement the above idea, we tackle the following
critical challenges:

1) Signal interference: Incorporating a metasurface into a
WiFi sensing system generates strong interference between
the WiFi-initiated and the metasurface-initiated signals. From
the perspective of a WiFi Rx, both types of signals contain
information associated with the sensing targets, but they can’t
be effectively utilized when they are superimposed and may
even degrade the sensing accuracy.

To mitigate such interference, the metasurface in SLING-
SHOT keeps switching the beamforming signal between two
opposite phase shifts, namely O to 7, at a high rate. While the
state of the interfering signals keeps stable in a short period,
subtracting the signals of opposite phase shifts produces
sensing signals with an enhanced signal-to-interference-plus-
noise ratio (SINR).

2) Clock synchronization: 1t is important for a WiFi Rx
to accurately map the received signals to the beams from the
metasurface, because different beams generally correspond to
different sensing targets. However, as the WiFi devices and
the metasurface operate distributedly, their unsynchronized
clocks may lead to the inconsistent mapping of the beams
to the targets in different beam scanning cycles. When the
metasurface’s beam scans at a high frequency, this problem
becomes very critical in ensuring the accuracy of sensing.

To deal with this problem, we search the values of the clock
offset and the clock drift between the metasurface and the WiFi
devices to find the correct mapping. This process is executed
at the Rx side via numerical searching without the metasurface
for complex computation.

Our contributions can be summarized as follows:

1) SLINGSHOT is the first-of-its-kind metasurface-enabled
multi-target WiFi sensing approach. Based on the metasur-
face’s beam scanning ability, SLINGSHOT translates multi-
target sensing into the multi-signal separation problem in the
time domain and efficiently resolves it at the WiFi Rx.

2) SLINGSHOT tackles the unique challenges in operating
the sensing system of WiFi devices and metasurface. By in-
corporating the key designs like passive clock synchronization
and interference mitigation, SLINGSHOT is robust and highly
applicable under practical settings.

3) We implement SLINGSHOT, including the metasurface with
aforementioned capacity of signal manipulation, and evaluate
its performance under various settings. Results show that
SLINGSHOT can sense up to 8 targets. Respectively compared
to the state-of-the-art methods, SLINGSHOT has 6.75 % higher
mean accuracy in activity recognition and 58.34 % lower mean
error in respiration monitoring.

II. SLINGSHOT OVERVIEW

This section presents a brief overview of SLINGSHOT. A
WiFi sensing system generally consists of two WiFi devices
(Tx and Rx) and a metasurface. Compared to a WiFi device,
a metasurface has very limited computational capacity. There-
fore, the design of SLINGSHOT leverages the metasurface’s
ability in signal manipulation, while leaving most of the signal
processing and computation on the WiFi Rx side.
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Figure 2: The workflow of SLINGSHOT on the WiFi Rx.

Fig. 2 illustrates the workflow of SLINGSHOT from the
perspective of the WiFi Rx. All the WiFi signals are initially
sent by the WiFi Tx. A portion of those signals incident on the
metasurface will be manipulated and reflected. So the signals
received by the WiFi Rx include the signals directly from the
WiFi Tx, the signals only reflected by targets, and the signals
reflected by the metasurface and targets.

When receiving such a mixture of signals, the Rx first
pre-processes them to get the raw CSI sequence. Then the
passive clock synchronization (Sec. IV) is executed on the
Rx, which calculates clock offset and clock drift between the
metasurface and the WiFi devices. Once the clocks of devices
are synchronized, samples in the CSI sequence can be mapped
to the corresponding beams. Then the CSI sequence will be
separated into multiple sub-sequences w.r.t. the beamforming
directions. After that, the interference mitigation scheme can-
cels the interference out from the CSI sub-sequences, getting
their SINR enhanced (Sec. V). Finally, the CSI sub-sequences
are fed into the sensing algorithm to output the sensing results
of different directions (Sec. V-C).

III. METASURFACE DESIGN

In this section, we introduce the configuration of the meta-
surface used in SLINGSHOT, the basic principle of sensing
signal separation with the metasurface and the analysis of the
metasurface’s sensing resolution.

A. Metasurface Configuaration

Similar to most existing metasurface [21]-[25], SLINGSHOT
adopts the 2D planar structure composed of periodically ar-
ranged sub-wavelength elements, called meta-atoms. Fig. 3(a)
illustrates the schematic diagram of the proposed metasur-
face structure with an enlarged meta-atom. This meta-atom
comprises two feeding lines interconnected with an irregular
hexagon patch through two PIN diodes. As Fig. 3(b) shows,
our proposed metasurface contains 8 x 8 meta-atoms and is
sized 20 cm X 22 cm. The working band of this metasurface
is centered at 5.2 GHz, and its parameters are specified
to [1=9.55 mm, [5=7.26 mm, [3=7.81 mm, [4,=9.30 mm,
15=9.89 mm, [=6.04 mm, [;=5.59 mm, I3=10.24 mm, and
p=25 mm. The substrate material is F4B, whose relative
permittivity €, = 2.65 and dielectric loss tangent tano =
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0.001. A via hole is incorporated to penetrate the substrate,
connecting the top and bottom layers in order to serve as the
analog and digital ground. This via hole is arranged at the
center of the substrate and the patch.

Our proposed metasurface has two crucial abilities to enable
SLINGSHOT, phase shifting and beam scanning.

1) Phase shifting: The meta-atoms can introduce different
phase shifts to the reflected signals, which is a key capability
for beamforming and wavefront shaping. Positive-Intrinsic-
Negative (PIN) diodes are usually incorporated into the meta-
atom design to enable this capability. By controlling the on/off
state of each PIN diode, the current distribution excited by the
incident signals is restructured, thereby altering the phase of
the reflected signals. In our design, two PIN diodes are used
in each meta-atom to perform 2-bit phase shifting (e.g., 0, g
, 37”). The metasurface’s performance of phase shifting w.r.1.
frequencies is shown in Fig. 3(c), where the phase gradient
between adjacent states is around 7 at 5.2 GHz.

2) Beam scanning: Based on the function of phase shifting,
the metasurface can further implement beam scanning by ad-
justing the configuration of each meta-atom. For a metasurface
with M x N meta-atoms, the phase shift introduced by a
meta-atom at row m, column n can be denoted as ®(m,n).
Assume there is a target located in the direction of D = (6, @),
where 6 and ¢ are the elevation and azimuth angles from
the metasurface to the target, so the far-field radiation pattern
towards the target can be formulated as

M N
F(G»SD) = Z Z\I!(m,n797cp) )

m=1n=1
—i{‘i’(m,n)—&-kdsinf)[(m—%)cos Lp—&-(n—%)sin ga]}
2)
where k is the wave number and d is the distance between
two meta-atoms [26].
Based on Eq. (1), the function of beamforming and beam
scanning can be achieved by appropriately configuring and

D

U(m,n,0,p) =e

)

changing the phase distribution across the metasurface. A
quick validation is conducted to examine the proposed meta-
surface’s ability of beamforming. Results in Fig. 3(d) demon-
strate the obvious gain in each beam direction, indicating the
enhancement of the sensing signals in these directions. By
quickly configuring the metasurface to switch the beamform-
ing direction, the metasurface can achieve fast beam scanning.
In the implementation of SLINGSHOT, the metasurface’s beam
switching keeps a high frequency of 1000 Hz, the same as
the frequency of Tx’s sending packets, which ensures the
continuous sensing for each target.

B. Sensing Signal Separation

By employing the beam scanning capability of the metasur-
face, SLINGSHOT can translate multi-target sensing into the
multi-signal separation problem in the time domain. Supposing
L targets locate within the sensing area, the composite signal
received at the WiFi AP can be expressed as

L

s(t) =Y Tix(t —7) +n(t) 3)
i=1

where I'; is the reflection coefficient of the i-th target, 7; is

its associated signal propagation delay and n(t) is noise. In

this case, it’s hard for the AP to separate each target’s sensing

information from the superimposed received signal.

In contrast, a metasurface with beam scanning capability
can impose a time-varying radiation pattern F'(6,¢,t) to
periodically steer its beam toward different sensing targets over
a sensing period 7. Consequently, the received signal becomes

L

S(t) = Z F(@i, d)i,t)f‘i:u(t - Ti) + n(t) .

i=1

“4)

As F(6;, ¢;,t) attains its peak value only when the beam is
directed at the i-th target, the received signal over a sensing
period can be partitioned into L signal segments:

sty =st+{0-1)T), te[0,T],1=1,...,L, (5

where s;(t) contains predominantly the reflection from the [-
th target. Within each signal segment, the beamforming gain
toward the intended target yields

sit) =Tipa (t—mq) +6 > iz (t—75) +n(t) , (6)
J#i(l)
with § < 1 quantifying the suppressed sidelobe contributions
from other targets. This time-domain signal separation forms
the basis of metasurface-enabled multi-target sensing.

C. Sensing Resolution

To fully exploit the sensing capabilities of the proposed
metasurface, we characterize its sensing resolution, the min-
imum distinguishable angular separation between adjacent
targets. This metric significantly determines SLINGSHOT’S
capability to resolve multiple objects in space. The sensing
resolution is derived from two fundamental factors and ex-

pressed as [27], [28]: O,cs = +/0% + A%, where 0y is the
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intrinsic Half-Power Beam Width (HPBW) of the metasurface
and Afg is the additional beam broadening induced by phase
quantization effects. 6y can be further denoted as

0.886\ 180°
(Md)?> + (Nd)?
where ) is the wavelength of incident signals. By substituting
respective values into Eq. (7), we can obtain 6z ~ 10.3°.
The beam broadening A6 defines the phase shift resolution
of metasurfaces and originates from the 2-bit phase control
of the metasurface. For discrete phase states with 7 steps,
the maximum phase error per meta-atom is bounded by Z.
Assuming uniform error distribution over 6® € P%,Jr%éj,
the phase error variance can be represented as

(6®%) = Var(6®) = ﬁ (8)
= =3 -

(7

Oy ~

This variance can be translated to angular broadening based
on the following formulation

Al ~ V{(0®2) 180° 9
€T kd w7 ®
where £ is the wave number of incident signals. By substitut-
ing respective values into Eq. (9), we can have g ~ 3.0°.
The resultant sensing resolution is ;.. = v/10.32 + 3.02 =~
10.8°. This suggests that SLINGSHOT can reliably distinguish
targets separated by around 10°, which is sufficient for typical
indoor sensing scenarios. For sensing resolution enhancement
in more fine-grained applications, one can increase the aperture
(i.e., more meta-atoms) of the metasurface to reduce Op
and employ higher-bit (ideally continuous) phase control to
minimize Afq (i.e., increase the phase shift resolution).

IV. PASSIVE CLOCK SYNCHRONIZATION

Accurate separation of sensing signals necessitates the cor-
rect mapping of the beams and the sensing signals. However,
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Figure 5: SINR calculation for a pair (AT, At). (a) The amplitude
information of the WiFi signals is extracted to form a sequence.
(b) The amplitude sequence is cut by a window and matched to
different direction bins according to the beam scanning pattern of
the metasurface. (c) The amplitude values in each direction bin are
accumulated to identify the LoS signal.

the metasurface and the WiFi devices aren’t in sync, which
usually leads to biased mappings and wrong sensing results.
In this section, we propose a passive clock synchronization
scheme to address this issue.

A. Problem Statement

As we mentioned in Sec. III, Tx’s sending packets and
the metasurface’s beam switching keep a high frequency.
However, the metasurface and the WiFi devices operate in a
distributed manner and don’t share the same system clock.
Thus, the clock offset and clock drift between them may
lead to the incorrect mapping of the beams and the targets,
and in turn, the wrong sensing results, as Fig. 4(a) shows.
Even though we set the same interval 7' of switching beams
and sending WiFi signals, the clock drifts existing in the
metasurface and WiFi devices will result in Typ = aapT,
Tyvs = qaysT, g € N*, where aap ~ 1 and ays ~ 1
are clock drift coefficients of the WiFi devices and the
metasurface, which lead to biased intervals T4p and Thg,
respectively; ¢ is the magnification, indicating the number of
WiFi packets sent in each direction.

If we don’t tackle this problem, they will accumulate over
time. Moreover, the clock offset of the metasurface and the
WiFi devices also influences the mapping relation. Affected
by these two factors, the sensing signals could be mapped
to the wrong beams and, consequently, wrong targets, as
Fig. 4(b) illustrates. Thus, to ensure the right mapping and
further accurate sensing results, we should obtain two values,
the clock drift (denoted as AT and the clock offset (denoted
as At) between the metasurface and the WiFi devices.

B. Parameter Searching

1) Basic idea: To synchronize the metasurface and the
WiFi devices, we propose a passive clock synchronization
scheme based on searching for the values of the pair (AT, At).
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Figure 6: Heatmaps of normalized SIN R s in the searching space.

This process is executed at the Rx via numerical searching,
without involving the metasurface for complex computation.

After receiving the sensing signals, we enumerate the value
of the pair (AT, At) to obtain different potential mappings
between the beams and the sensing signals. In each mapping,
the amplitude values of the signals corresponding to the same
beam are accumulated, then the highest value will be selected.
The beam direction of the highest value is considered as the
direction of the Rx, because the LoS (line-of-sight) signals
between the metasurface and the Rx exhibit a stronger energy.
Then, we calculate the SINR of the LoS signals based on the
accumulated values. The pair leading to the highest SINR is
considered the most accurate.

2) Detailed algorithm: As Fig. 5 shows, we first extract
the amplitude information of the WiFi signals to obtain an
amplitude sequence. Then, according to the beam scanning
settings of the metasurface, this sequence will be cut by a
window with the length of L and matched to L different
direction bins, where L is the number of WiFi packets sent in
a round of beam scanning (L = 3 in Fig. 5 for illustration).
Then, we accumulate the amplitude values in each direction
bin (depicted in Fig. 5(b)), as

X-1
Al = Z AzLJrl al € [le] ’

z=0

(10)

where A is the accumulation of values and X is the total
number of values, in [-th direction bin, respectively.

Next, the direction bin bearing the highest accumulated
value (denoted as A,,4;) is regarded as the direction of the
Rx, as illustrated in Fig. 5(c). Finally, we calculate SINR of
the LoS signals between Rx and metasurface in this pair as

Amaw
Z Aj - Amax '

Each pair of (AT, At) is associated with a specific value
of SINR,s. Thus, we traverse possible values of the pair
with a predefined searching step to identify the most accurate
one that leads to the maximum SINR;,.g.

We conduct a preliminary experiment to validate our passive
synchronization scheme. In this experiment, we set 7' = 1 ms
and ¢ = 1. The searching step is set to 10 us for both AT
and At, as a trade-off between accuracy and computational
latency'. Consequently, the range of At is established as

SINRp,s = (11)

'We set ¢ = 1 in this preliminary experiment for illustration, while ¢ = 2
in our practical settings based on our design in Sec. V. This difference doesn’t
affect the effectiveness of our algorithm, as long as p € N*.

[-0.5 ms, 0.5 ms]. Based on our experimental results and
empirical observations, AT in our system consistently falls
within [-0.2 ms, 0.2 ms]. Therefore, we designate this as
the range for AT. Fig. 6(a) illustrates the heatmap of the
normalized SIN Ry s calculated based on different values of
(AT, At). This result demonstrates that we can find the pair
bearing the maximum SIN Ry,gs, indicating that the devices
can be well synchronized with the value of the pair (AT, At).

C. Searching Space Reduction

Note that the clock drift will result in accumulated error
over time, so the synchronization should be executed intermit-
tently. In that case, the time-consuming brute-force searching
is unacceptable for our time-sensitive system. To address
this problem, we exploit the divide-and-conquer algorithm to
significantly reduce the time cost.

Specifically, as for Fig. 6(a), we divide the searching
space into 80 sub-spaces, all of which are sized 5 x 10.
Subsequently, we compute the SIN R} ,s value for the pair
(AT, At) that is centered at each sub-space, and use this
value to represent the value of the respective sub-space. This
process yields an 8 x 10 matrix, as Fig. 6(b) shows. Following
this, a coarse-grained search is conducted to select the sub-
space with the maximum value of SINR,s in this matrix.
A fine-grained search is then performed within the selected
sub-space to ultimately determine the pair (AT, At) exhibiting
the globally maximum SIN R;,s. By doing so, the searching
space can be reduced from 4000 (40 x 100) to 130 (50 + 80),
saving nearly 30 X time cost.

Note that SLINGSHOT performs passive synchronization
at a fixed interval (e.g., every few seconds) to maintain
continuous accuracy. Although clock drift may vary gradually
with environmental factors (e.g., temperature), such variations
typically occur over tens of minutes to hours. Thus, over
intervals of a few seconds, the drift can be viewed as constant,
and there is no need to perform the search at every time
slot (i.e., 1 ms). Our evaluation in Sec. VI-C demonstrates
no obvious improvement with searching at each time slot.

V. INTERFERENCE MITIGATION

After clock synchronization, sensing signals can be sepa-
rated and correspond to different targets, respectively. How-
ever, the sensing signals may be heavily interfered. In SLING-
SHOT, we exploit metasurface’s phase shifting ability to mit-
igate the interference.

A. Signal Model

Considering that a target is in the beamforming direc-
tion, the beamforming signals (i.e., the sensing signals) are
originally radiated from the Tx, then reflected by the meta-
surface and a target, and finally received by Rx. Thus, the
beamforming signal contains the valuable sensing information
of the target in the beamforming direction. We denote the
beamforming signal as Spsg, whose energy [26], [29] is

,PTGTCJRGuthQ)\6 . ‘Ft|2|FZV[S|2F, (9T7 SDT) F (9157 SOt)
(4m)°

Pys =

)

(12)

7‘127‘22
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Figure 7: The phasor diagram of interference mitigation process in SLINGSHOT. (a) The received signal at Rx (blue line) is composed of
the beamforming signal (Sus in the yellow line) and the interfering signal (Sins in the red line). (b) When metasurface performs fast phase
shifting Ibetween 0 and 7, Sins can be viewed as relatively stable in such a short time, while the direction of Sy in the I/Q diagram reverses
to be Sy, leading to (c) different received signals at Rx. (d) By taking vector subtraction for the two received signals, the beamforming

signal Sys is doubled while the interfering signal Sins is mitigated.

2

ZZ (m,n 9T7<PT)

m=1n=1

F' (0r,¢1) (13)
where Pr is the transmission power of the Tx; G, Gg, Gy
and G are the respective gains of the Tx, Rx, a meta-atom and
the target; I'; and I'j;g are the respective reflection coefficient
of the target and the metasurface; A is signal’s wavelength;

F' (07, pr) and F (0;, ;) are metasurface’s radiation pattern
towards the Tx and the target, respectively; . n.m»> 71 and r are
the respective distance between the Tx and each meta-atom,
the metasurface and the target, and the target and the Rx.

As the beamforming operation concentrates signal energy to
result in a higher Py, g, the target in the beamforming direction
can dominate the channel variation. Therefore, its sensing in-
formation is easier to be distinguished compared to the targets
in other directions. However, as Fig. 7(a) shows, the received
signal Sgy is not only composed of the beamforming signal
Sws, but also the interfering signal Sj,s. The main components
of Sint are the direct (Sgirect) and reflected (Smuttiparn) Signals
between the Tx and RX, i.e., Sint = Sdirect + Smultipath-

B. Mitigating Interference

We exploit metasurface’s ability of fast phase shifting to
mitigate interfering signals. Our observation is that when the
metasurface reverses states of all meta-atoms (e.g., from 0
to 7, and vice versa), the direction of Sys reverses in the
phasor diagram while maintaining the beamforming direction
and gain unchanged. The reversed signal can be formulated as

Sus = —Swis - (14)
Accordingly, received signals before and after reversion are
15)
(16)

Skrx = Swms + Sirect + Smultipath

Sp, = S{ws + Sirect + Sr'nultipalh .

As Siirect is unchanged, subtracting Sg, and Sg, will yield
ASiy = Sre — S,

=2Sms + (Smullipath - Srlnullipath>

Our observation on the multipath signals (Syuiipan and
) is two-fold. 1) With WiFi packet rates on the order

a7
(18)

mulupath

HD)

Normalized Amplitude

il )
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Figure 8: Respiration waveform recovery for one target in the multi-
target sensing scenario. (a) Superimposed signal obtained without
metasurface. (b) Respiration signal obtained with metasurface but
without interference mitigation. (c) Enhanced respiration signal ob-
tained with fast phase shifting to mitigate interfering signals.

of 1000 Hz, human motion is very slow, so the induced
variations in multipath over the 1 ms reversion interval are
very small. 2) The beamforming signal Sys dominates the
energy of the received signal, whereas multipath components
are comparatively weak. In that case, the variation in the
multipath signals Syuitipath — S:numpath will exhibit little impact
on the subtracted §ignal, which can be further represented as
ASRX = SRX — SRx ~ 2SMS~

Thus, the beamforming signal containing the valuable sens-
ing information is extracted from the received signal, with
theoretically doubled energy, as Fig. 7(d) shows. Note that
interfering signals experiencing multiple reflections (e.g., sig-
nals reflected by the metasurface, the target and other targets
consecutively) are ignored in SLINGSHOT, because they go
through severe attenuation and only cause negligible impact
on the sensing signals.

We conduct a proof-of-concept experiment to validate the
proposed interference mitigation method. In the experiment,
we try to monitor the respiration of 5 invited volunteers.
Fig. 8(c) demonstrates the recovered respiration waveform of
one volunteer after interference mitigation. It obviously con-
tains much less interfering signals compared to that without us-
ing interference mitigation (Fig. 8(b)) and without metasurface
(Fig. 8(a)). Note that although we can recover the respiration
waveform without interference mitigation (Fig. 8(b)), wrong
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sensing information may be obtained (in the red dashed boxes)
which degrades the sensing accuracy.

C. Sensing Algorithm

After interference mitigation, Rx can obtain the enhanced
sensing signals in each beamforming direction. Therefore,
different sensing algorithms can be applied to output the cor-
responding sensing results. Here, we demonstrate the sensing
performance of SLINGSHOT w.r.t. two typical sensing tasks:
respiration monitoring and activity recognition.

1) Respiration Monitoring: Leveraging the enhanced sens-
ing signals, SLINGSHOT can estimate the respiration rates
of the targets breathing simultaneously by using Variational
Modal Decomposition (VMD) [17]. As Fig. 9(a) shows, the
respiration rate of the target shows high SINR in the respiration
spectrogram. Moreover, if there is no target in a direction, the
spectrogram resembles that shown in Fig. 9(b), where many
peaks exceed the normal range of a person’s respiration rate
(i.e., 10-30 bpm [13]). This observation can be exploited for
SLINGSHOT to detect the presence of targets.

2) Activity Recognition: Fig. 10(a)-(c) illustrates the spec-
trograms of Doppler frequency shift (DFS) when multiple tar-
gets perform different activities. It’s obvious that the respective
DFES shows higher SINR than the background noise, which
can contribute to higher recognition accuracy (discussed in
Sec. VI). SLINGSHOT also employs DFS to detect the targets,
based on the fact that the DFS is nearly zero if there is no
target, as Fig. 10(d) shows. Note that if a target keeps stable,
we can borrow existing methods for discrimination [30],
[31]. As a multi-target sensing approach, SLINGSHOT hasn’t
regarded it as a main concern. In the future, we may integrate
these solutions into the design.
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csi

SlingShot
Algorithm

Principal
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|
|
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Figure 12: The procedure of data collection and processing.

VI. IMPLEMENTATION AND EVALUATION
A. Experimental Methodology

1) Experiment Setup: Our metasurface is connected to
National Instruments (NI) PXIe-1082 [32] and the digital I/O
module, which controls the on/off states of PIN diodes on
metasurface to achieve phase shifting and beam scanning. In
SLINGSHOT, the proposed metasurface is designed at 5.2 GHz
and performs periodic beam scanning from —50° to +50°,
with 10° step (11 beamforming directions). The time interval
of changing the beamforming direction is 2 ms, 1 ms for phase
state 0 and 1 ms for phase state .

The working band of SLINGSHOT is 5.19 GHz-5.21 GHz
(i.e., Channel 40) and we collect CSI data with Pi-
coScenes [33]. We employ commercial AX210 NICs at both
the Tx and Rx. PicoScenes running on the Tx configures
the NIC to inject WiFi packets, while the NIC on the Rx
is set to monitor mode to capture and parse those WiFi
packets to extract raw CSI. The procedure of CSI processing
is shown in Fig. 12. To address carrier frequency offset (CFO)
and sampling frequency offset (SFO), we perform conjugate
multiplication of the CSI from the Rx’s two antennas, and
then apply principal component analysis (PCA) to extract the
principal components of the CSI [12]. Then, the resulting CSI
is fed into the SLINGSHOT algorithm for multi-target sensing.

2) Sensing Tasks.: We evaluate SLINGSHOT’s ability of
multi-target sensing with two realistic sensing applications,
activity recognition and respiration monitoring.

For activity recognition, we first train a deep learning
model for activity recognition, and then, we use this model to
evaluate the performance of multi-target activity recognition.
Specifically, we invite 8 volunteers to perform 6 types of daily
human activities, including boxing (BX), standing up (SU),
sitting down (SD), waving hand (WH), circling around (CA)
and jumping (JP). Each volunteer individually repeats each
type of activity for 200 times and completes an activity in 3
seconds. Accordingly, we collect and label 9600 CSI samples
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Figure 13: The overall performance of SLINGSHOT.

to build the dataset. Then, we augment the dataset size to
19200 by adding random noise into the data, which is a widely
used method for data augmentation [34], [35]. We use the
augmented dataset to train an RNN model for activity recog-
nition. The model demonstrates a classification accuracy of
95.74%. Next, we invite multiple volunteers to simultaneously
perform different activities and deploy SLINGSHOT to extract
CSI samples corresponding to each target, as Fig. 11 shows.
The extracted CSI samples are fed into the aforementioned
RNN network to test the performance of SLINGSHOT’s on
multi-target activity recognition.

For respiration monitoring, we invite volunteers to stand
at different distances and beamforming directions to breathe
simultaneously, and use Go Direct respiration belts [36] to
obtain ground truth. We deploy SLINGSHOT to extract CSI
samples corresponding to each target. Then, we employ VMD
to extract the respiration waveform of each target. As Fig. 12
shows, the respiration belts are connected to the PC via
Bluetooth, and the ground-truth results are synchronized with
the WiFi sensing results using timestamps.

3) Baselines: We choose three state-of-the-art methods as
baselines. In the case of activity recognition, we compare
SLINGSHOT with WiMU [11]. Its core idea is to search for
the possible combination of signals corresponding to multiple
known activities, and then compare the detected signal with
the combined signal to identify activities performed simulta-
neously. In the case of respiration monitoring, we compare
SLINGSHOT with MultiSense [13]. With the input of the
number of targets, MultiSense models the multi-target respi-
ration sensing as a blind source separation problem, then uses
independent component analysis to distinguish the respiration
of each person. Besides, we also compare SLINGSHOT with
RIScan [37] in both of the two sensing tasks. RIScan employs
the metasurfaces and the beam scanning capability to localize
multiple WiFi devices concurrently. We make our best effort
to re-implement the baseline methods for a fair comparison.

B. Overall Performance

We first evaluate the general performance of SLINGSHOT
when performing the two sensing tasks mentioned above in
multi-target scenarios. Then, we demonstrate the accuracy of
SLINGSHOT to identify targets.

1) Activity Recognition: We invite 8 volunteers to perform
different activities, in different directions and at different
distances with respect to the metasurface. None of the targets

BX 0.03 | 0.00 | 0.01 4 BX 0.04 | 000 | 0.07 | 0.02 | 0.00 q

SUF 0. 0.00 | 0.00 | 0.03 4 SU 0.04 002 | 0.04 | 0.00 | 0.05

SD | 0.00 SDI 0.02 | 0.03 0.00 | 0.09 | 0.00
WHF 0.02 | 0.00 WHF 0.05 | 002 | 0.01 0.08 | 0.02 4
CAF 0.01 | 0.00 CAF 0.03 | 0.01 [ 0.00 | 0.03 0.01
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(a) SLINGSHOT (b) WiMU
Figure 14: Confusion matrices on activity recognition.

is in the direction of Rx. Fig. 13(a) compares the test accuracy
of SLINGSHOT with WiMU and RIScan when the number
of targets in the sensing area increases from 2 to 8, with
the comparison of confusion matrices in Fig. 14. Results
show that the mean accuracy of SLINGSHOT is 94.84 %,
which is 6.75 % higher than that of WiMU and 58.16 %
higher than that of RIScan. RIScan’s high error stems from
its assumption of zero clock drift between the WiFi APs and
the metasurface. This assumption will severely misattribute
the WiFi signal and metasurface beam to the wrong sensing
target, and lead to significant sensing errors. Note that the
accuracy of SLINGSHOT is higher than that of WiMU across
all numbers of targets, and keeps the accuracy over 90 %, and
even over 97 % when targets are less than 5. In comparison,
the accuracy of WiMU is less than 90 % when there are over
5 targets. These results evidently confirm the effectiveness of
SLINGSHOT in multi-target activity recognition. We note that
the accuracy of SLINGSHOT declines obviously when there
are 7 or 8 targets. The reason is that, in these cases, there
are always 3 targets adjacent to each other among the 11
beamforming directions (from —50° to +-50°), which will lead
to an obvious interference. This issue can be easily addressed
by increasing meta-atoms in the metasurface.

2) Respiration Monitoring: We employ a similar methodol-
ogy to evaluate the performance of SLINGSHOT in respiration
monitoring. Fig. 13(b) compares the error of respiration rate
estimation of SLINGSHOT with MultiSense and RIScan. The
mean error of SLINGSHOT is 0.56 bpm, which is 58.34 %
lower than that of MultiSense and 69.36 % lower than that
of RIScan. We find that the mean error of SLINGSHOT is
always lower no matter the number of the targets. Besides,
SLINGSHOT demonstrates less than 1 bpm error even when
8 targets breathe simultaneously. Note that the error that is
larger than 1 bpm is usually considered unacceptable [13],
while the mean error of MultiSense exceeds this threshold
when over 4 targets breathe simultaneously. Fig. 15 illustrates
an example of respiration waveforms captured by SLINGSHOT
and the corresponding groundtruth waveforms in an eight-
target scenario. The result shows that the captured waveforms
by SLINGSHOT (red dashed lines) closely track the true
breathing waveforms (blue solid lines). Even though there
are small temporal offsets, they do not significantly affect the
accuracy of the estimated respiration rates.

3) Target Detection: Fig. 16 shows the accuracy of one-
shot target detection in activity recognition (using DFS spec-
trogram) and respiration monitoring (using respiration spectro-
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Figure 16: Target detection accu- Figure 17: Factorial experiment
racy of SLINGSHOT. on the design of SLINGSHOT.

gram). When the number of targets increases from 2 to 8, the
mean detection accuracy only slightly decreases from above
98 % to 96 %. The accuracy can be further improved to near
100 % by performing detection multiple times.

C. Factorial Experiment

In this section, we conduct a factorial experiment to ana-
lyze the impact of the two components, passive synchroniza-
tion (module I) and interference mitigation (module 2), on
SLINGSHOT’s performance and their relative importance. The
factorial experiment is conducted under 5 different settings:
S1 (with both two modules and search at every time slot), S2
(with both two modules and search at a 3-second interval), S3
(only with module I and search at a 3-second interval), S4
(only with module 2), and S5 (without any sub-module).

Fig. 17 reports the results of this factorial experiment under
a four-target scenario. With both sub-modules employed, the
mean accuracy of using the S1 and S2 is around 97.50 %. This
suggests that there is no obvious improvement with searching
at every time slot. In other words, SLINGSHOT can well
synchronize the distributed devices with searching at a fixed
interval. When SLINGSHOT doesn’t use the metasurface to
mitigate interfering signals, the mean accuracy will decline to
89.26 % (S3) because of the decreased SINR. What’s worse,
if sensing devices aren’t in sync, the mean accuracy decreases
drastically to around 30 % (S4 and S5).

The above results indicate that interference mitigation has
a more significant impact on system performance.

D. Impacting Factors

1) Distance between Targets: Although SLINGSHOT mit-
igates interfering signals by employing metasurface, some
targets may also interfere with each other if they are very
close. To examine the impact of distance between targets, we
invite 2 volunteers to perform activities in different beam-
forming directions, where the angle difference between the
two directions is from 10° to 50°. Results in Fig. 18(a) show
that the accuracy of activity recognition is reduced to around
90 % if the angle difference is only 10° (i.e., the two targets
are in the adjacent beamforming directions). Otherwise, the
accuracy will be over 95 %. The reason behind these results
is that the beam width of the metasurface is approximately
10°, so the beamforming signal can’t well isolate two targets
in the adjacent beamforming directions. To address this issue,
we can simply increase the number of meta-atoms to reduce
the beam width, which we leave for our future work.

2) Directions of Targets: As the beamforming angle in-
creases from 0° to £50°, the beamforming gain of the meta-
surface may reduce [38], [39], which is implied in Fig. 3(d).
We carry out experiments to see how the sensing performance
is influenced by varying beamforming angles. 2 volunteers
are invited to perform activities from £10° to £50°, and
an individual experiment is carried out in 0°. Fig. 18(b)
reports the results that as the beamforming angle increases,
the recognition accuracy decreases as the angle varies from
0° to -50° and +50°. Note that the accuracy in all directions
is above 90 %, indicating the robustness of SLINGSHOT.

3) Time-varying Propagation and Multipath: In real-world
operational conditions, the sensing area may be subject to
time-varying propagation due to moving persons. Also, dif-
ferent levels of multipath caused by indoor reflectors usu-
ally exist. To evaluate the performance and robustness of
SLINGSHOT under such conditions, we conduct two sets
of experiments. In the first set, 6 volunteers simultaneously
perform activities while additional volunteers move within
each of Area 1 or Area 2 (see Fig. 11), thereby creating a time-
varying propagation environment. As shown in Fig. 18(c), the
recognition accuracy declines from 94.67 % to 91.05 % or
90.37 % when moving persons are present in only one area
or both of the two areas, respectively. In the second set, static
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(e) Impact of the WiFi packet delay.

reflectors (i.e., desks and chairs) are placed in Area 1 or Area 2
to introduce different levels of multipath. Fig 18(c) shows that
the recognition accuracy decreases to 92.38 % or 91.17 %
with reflectors in only one area or both of the two areas,
respectively. The results show that SLINGSHOT ’s performance
may be influenced by time-varying propagation and multipath,
yet the sensing accuracy does not degrade drastically.

4) Distance between Metasurface and Targets: We evaluate
the impact of the distance between the metasurface and the
targets on the recognition accuracy. The distance is set to
2 m, 3 m and 4 m in each group of experiments. Results
Fig. 18(d) show that the mean accuracy at the distance of 2 m
declines heavily as the number of targets increases. This is
because more targets at this distance will cause a very small
interval between targets. Thus, it is more likely to result in
mutual interference and low accuracy. Things get better when
the distance is set to 3 m where the mean accuracy where
the mean accuracy across different numbers of targets is over
90 %. However, as the distance further increases to 4 m, the
recognition accuracy declines. The reason is that the distance
is too long to ensure sufficient SINR.

5) WiFi Packet Delay: The transmissions of dedicated WiFi
sensing devices usually exhibit less variability and uncertainty
than those of devices operating in live networks. However, they
could still be affected by Carrier-Sense Multiple Access with
Collision Avoidance (CSMA/CA) and random backoff, which
may lead to fluctuating packet delays. SLINGSHOT’s design is
robust to such fluctuation: following the method discussed in
Sec. IV-B and Eq. (10), we can use each packet’s timestamp
to map each packet to the corresponding direction bin. Then
similarly, we can compute the average amplitude for each bin
to find the direction of the Rx, and map each WiFi packet to
each sensing target.

We conduct experiments under fluctuating packet delays
between 1 ms to 10 ms and report the results in Fig. 18(e).
Results show that in a six-target scenario, the mean accuracy
decreases from 94.67% under constant delay to 88.91% under
fluctuating delay. Although the performance is affected, the
accuracy does not drop drastically.

VII. DISCUSSION

In this section, we discuss practical issues concerning the
applicability and efficacy of SLINGSHOT.

1) Phase-Shift switching time of the metasurface: The
phase-shift switching time of our proposed metasurface is
under 1 us, which is less than 1 % of the interval between con-
secutive phase shifts. This sub-us latency sufficiently supports
high-frequency periodic beam scanning and has a negligible
impact on SLINGSHOT ’s performance.

2) Co-Located Sensing Targets: Multiple targets may be
co-located within the same beam in practical scenarios, which
could lead to wrong sensing results or cause some targets’
sensing information to be lost. Two further enhancements to
SLINGSHOT can mitigate this problem. First, increasing the
number of meta-atoms and employing higher-bit phase con-
trol will improve sensing resolution (i.e., reducing the beam
width). Second, deploying multiple metasurfaces to perform
beam scanning from different angles to separate targets.

VIII. RELATED WORK

The distinctive feature of SLINGSHOT lies in performing
multi-target WiFi sensing with the metasurface. We briefly
summarize existing works in the related fields, metasurface-
assisted wireless sensing and multi-target WiFi sensing.

1) Metasurface-Assisted Wireless Sensing: Metasurfaces
are typically designed as 2D artificial structures, which can
flexibly and accurately manipulate wireless signals [21], [22],
[25], [26], [29]. Recently, the promise of integrating metasur-
face into IoT technologies has been proven [23], [37], [39]-
[41]. Many works offer novel solutions for wireless sensing,
spanning WiFi, mmWave and acoustic sensing. Metasight [42]
proposes a passive metasurface in the mmWave band to help
detect objects in occluded regions. AMS [43] enhances AoA
estimation accuracy by using a passive acoustic metasurface
to significantly boost the beamforming gain. RFlens [39] uses
a metasurface to resteer WiFi signals to sense the respiration
rate of the target in NLoS scenarios. MetaSense [41] achieves
gesture recognition with a single frequency based on a dedi-
cated metasurface.

Different from the existing works that focus on novel meta-
surface designs or control schemes, SLINGSHOT addresses the
coordination between WiFi sensing devices and the metasur-
face as well as the multi-signal separation in the time domain
for multi-target sensing. Moreover, SLINGSHOT is compatible
with the most widely used metasurface designs (e.g., 2-bit
phase shifting) and control mechanism (i.e., beam scanning),
thereby ensuring broad applicability.
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2) Multi-Target WiFi Sensing: As WiFi sensing technolo-
gies gain increasing attention, many works try to adopt differ-
ent methods for multi-target sensing [5], [11], [13], [16], [17],
mainly including signal processing based, distributed WiFi
devices based, and metasurface based methods.

Signal processing based methods. Traditional methods ex-
ploit signal processing techniques to achieve multi-target
sensing. MultiSense [13] models the multi-target respiration
sensing as a blind source separation problem to separate the
reparation information of each target. WiMU [11] searches the
possible combination of signals corresponding to known ges-
tures and then compares the detected signal with the combined
signal to identify gestures performed simultaneously. Even
though these methods can extract the sensing signals from the
superimposed signals, they assume that the sensing signals
from different targets exhibit distinct features or that these
features are known based on some specific domain knowledge.

Distributed WiFi devices based methods. To accurately map
sensing signals with targets, much of the existing works try
to increase the available sensing by using multiple distributed
WiFi devices. For instance, exploiting distributed WiFi APs
or APs with large antenna arrays for multi-target sensing [5],
[12], [14], [15], but at the cost of complex control over
WiFi systems. Besides, MUSE-Fi [16] and M?2-Fi [17] exploit
the near-field effect to enable multi-target sensing with the
distributed smartphones. Specifically, they assume that every
target is close to a smartphone, so the near-field channel
variation caused by the target will significantly overwhelm
variations caused by others. However, the sensing range of
these methods significantly depends on the smartphones.

Metasurface based methods. Recent works [18]-[20], [37]
propose to leverage metasurfaces to dynamically manipulate
the wireless channel for multi-target sensing. The work closest
to ours is RIScan [37], which employs two metasurfaces and
their beam scanning capability to localize multiple WiFi de-
vices concurrently. Compared to RIScan, the core contribution
of SLINGSHOT is twofold. 1) Sensing algorithm: SLINGSHOT
achieves accurate target detection and activity sensing without
imposing targets to carry any devices. By contrast, RIScan
does not provide detection capability and requires computing
sensing results at each user device. 2) Metasurface control
strategy: SLINGSHOT ensures a robust coordination between
WiFi devices and the metasurface without relying on a cen-
tralized controller. However, RIScan imposes the WiFi devices
and the metasurface to be under the same controller, which
would constrain scalability and may be difficult to implement
with commercial WiFi devices.

Besides, MetaBreath [18] and Li et al. [20] exploit metasur-
face to generate harmonic signals with different frequencies for
different targets to distinguish their sensing signals. However,
both of the approaches require the incident signals to be single-
tone signals, which aren’t compliant with the WiFi standards.
MetaPhys [19] requires the incident signals to be FMCW
signals, which are also not compliant with the WiFi standards.
Compared with the aforementioned works, SLINGSHOT is
fully compliant with the WiFi standards.

IX. CONCLUSION

We presented SLINGSHOT, the first-of-its-kind WiFi multi-
target sensing technique that decently separates the sensing tar-
gets in the time domain. SLINGSHOT innovates a multi-target
sensing technique in that it fully exploits the fast phase shifting
and beam scanning capabilities of the metasurface to enhance
the sensing signals of each target and achieves the passive
clock synchronization between the metasurface and the WiFi
APs. Through extensive experiments, we demonstrate that
SLINGSHOT offers better performance than state-of-the-art
solutions when performing two representative sensing tasks,
activity recognition and respiration monitoring. We believe
that SLINGSHOT has significant potential to support ubiquitous
multi-target sensing across a variety of applications.
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