
Scan Without a Glance: Towards Content-Free
Crowd-Sourced Mobile Video Retrieval System

Cihang Liu

School of Software

Tsinghua University

Beijing, China

cihang@greenorbs.org

Lan Zhang

School of Software

Tsinghua University

Beijing, China

zhanglan03@gmail.com

Kebin Liu

School of Software

Tsinghua University

Beijing, China

kebin@greenorbs.com

Yunhao Liu

School of Software

Tsinghua University

Beijing, China

yunhao@greenorbs.com

Abstract—Mobile videos contain rich information which could
be utilized for various applications, like criminal investigation
and scene reconstruction. Today’s crowd-sourced mobile video
retrieval systems are built on video content comparison, and
their wide adoption has been hindered by onerous computation
of CV algorithms and redundant networking traffic of the
video transmission. In this work, we propose to leverage Field
of View(FoV) as a content-free descriptor to measure video
similarity with little accuracy loss. Based on FoV, our system can
filter out unmatched videos before any content analysis and video
transmission, which dramatically cuts down the computation and
communication cost for crowd-sourced mobile video retrieval.
Moreover, we design a video segmentation algorithm and an R-
Tree based indexing structure to further reduce the networking
traffic for mobile clients and potentiate the efficiency for the cloud
server. We implement a prototype system and evaluate it from
different aspects. The results show that FoV descriptors are much
smaller and significantly faster to extract and match compared to
content descriptors, while the FoV based similarity measurement
achieves comparable search accuracy with the content-based
method. Our evaluation also shows that the proposed retrieval
scheme is scalable with data size and can response in less than
100ms when the data set has tens of thousands of video segments,
and the networking traffic between the client and the server is
negligible.

Keywords-crowd-sourced; mobile video retrieval; Field of View

I. INTRODUCTION

With the fast development of smart devices, numerous on-

board cameras lead to ubiquitous video sources. According to

International Telecommunication Union, by May 2014, there

are nearly 7 billion mobile subscriptions worldwide, which is

equivalent to 95.5% of the world population. In the United

States, over 50% of the mobile audience take photos with

mobile phones and over 20% of them record mobile videos.

Video data are rich in visual/non-visual information, and tak-

ing good use of massive video data will bring us great benefits.

One of the most important applications is content-based video

retrieval. Existing work designed different types of descriptors

to characterize features of video content [1]. By measuring

similarity between content descriptors, video retrieval systems

can automatically detect desired targets in videos, e.g., human

faces [2], crime behaviors [3] and security events [4]. Crowd-

sourced videos can greatly increase the power of video data.

For example, in 2013, the Boston bombing causes three deaths

and 150 injuries. After the attack, with the help of the videos

taken by the thousands of attendees to the event, the police

successfully pinpoint the suspects, scout for additional bombs,

and figure out who was at each scene within five days.

There is no doubt that the crowd-sourced video retrieval

system is a must in the era of big data. Existing video retrieval

solutions ([5] [6] [7]) inevitably fall into two categories, data-

centric and query-centric. Data-centric solutions rely on clients

uploading their mobile videos to the data center. The powerful

data center will do the video content computation and client

users only need to transmit query request and receive search

result. In query-centric systems, cloud server only distributes

queries. When the clients receive the queries, they perform

the content retrieval algorithm locally and return the results

to the cloud. However, using existing content based retrieval

techniques, neither of the architectures is practical in a crowd-

sourced video scenario. Firstly, as the data volume of the

crowd-sourced videos is extremely large, uploading video data

via cellular network will be extremely time-consuming and

money-consuming. Secondly, mobile videos contain a lot of

personal information. Uploading raw video data to the server

may incur users’ privacy concerns. Thirdly, video data are

unstructured high-dimensional data. CV algorithms for video

content analysis and comparison are computation-intensive. It

is not efficient to conduct heavy CV algorithms over crowd-

sourced videos on either mobile devices or data centers.

We notice that, most overhead of a content based retrieval

system is caused by transmitting and analyzing unmatched

videos. To achieve efficient crowd-sourced videos retrieval,

it is essential to cut down unnecessary transmission and

computation. The dilemma compels us to recall the motivation

of crowd-sourced videos retrieval, that is the user tends to take

use of ubiquitous video cameras to learn ”When”, ”Where”,

”Who” and ”What”. Since ”Who” and ”What” requires expen-

sive video content analysis, we can use ”When” and ”Where”

to filter out unwanted video clips. In other words, rather than

analyzing video content directly as current video retrieval

systems, we propose to significantly narrow down videos by

”Where” and ”When”, which means first searching videos in a

certain area during a specific time interval. Based on this idea,

in this work we propose a content-free crowd-sourced videos

retrieval system. As the name implies, rather than the visual

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.34

251

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.34

250

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.34

250

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.34

250

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.34

250

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.34

250

content, the content-free system tends to formalize the spatio-

temporal information embedded in mobile videos, which could

be managed at a much lower cost.

Previous works have laid a good foundation for content-

free video systems. For example, [8] proposed a model for

mobile video search. The viewable scene of each video frame

is defined as a tuple (p, θ, r), in which the elements represent

the location, orientation and radius of view of the viewable

sector. [9] further builds a GeoTree. Adjacent video frames

can be aggregated and the bounding rectangle of these frames

is constructed and indexed in the tree. However, there are still

challenges when constructing a mobile video retrieval system.

Firstly, the search should be conducted on both temporal and

spatial dimensions, but none of the existing work considers

the temporal information of videos. Existing architecture only

return a set of discrete video frames whose scenes have

intersection with the query range, rather than continuous

video segments. Secondly, the existing aggregation rules of

video frames are simple and far from practical. Those rules

require the user to shift the camera in the same direction

with the orientation of the device, or rotate the camera at a

constant spot. But in real life, the movements of the user are

complicated and unpredictable.

Facing these challenges, we design and implement a practi-

cal content-free mobile video system. By defining the content-

free video descriptor FoV(Field of View) [8], videos are

segmented into clips in real-time and descriptors are uploaded

to the cloud when the subscriber finishes recording. We design

the indexing structure maintained at the cloud side to guarantee

high efficiency of video search. Our main contributions are

summarized as follows:

• We propose a new content-free similarity measurement

over mobile video frames, which achieves high efficiency and

comparable matching results with the content based method.

This method imposes no constraint on device subscribers’

movements, and works in complex practical scenarios.

• We design and implement two real-time algorithms to ex-

tract the content-free feature of the video frames and segment

the video into clips according to our similarity measurement.

Both the computation cost for feature extracting and network-

ing traffic for feature uploading are extremely small.

• We propose an efficient indexing structure that takes both

spatial and temporal information of the content-free feature

into consideration. With the index structure maintained at

the server side, a user can search top-k most relevant video

segments with a minimized response time.

The rest of this paper is organized as follows. Section II

specifies the problem definition and system overview. Section

III and section IV discuss our FoV similarity measurement

and video segmentation schemes respectively. In section V,

we describe the video retrieval and rank algorithms. The

system implementation and evaluation are specified in section

VI. Section VII discusses some design issues. Section VIII

discusses existing efforts that are related to this work and we

conclude our work in section IX.

II. PROBLEM DEFINITION AND SYSTEM OVERVIEW

In general, there are three parties involved in a crowd-

sourced video retrieval system. On the client side, a video
provider records videos using his/her smart devices (e.g.,
smart phones and smart glasses) and would like to contribute

them to the retrieval system. Videos could be taken while the

providers are moving, e.g. walking and driving. A querier need

to retrieve video clips whose content satisfy some specific

temporal and spatial criteria. The cloud server collects de-

scription information of videos from providers, such as spatio-

temporal information and feature descriptors, and searches

target videos for the querier. To speed up the search procedure

while remaining the search accuracy, the server can index the

video information. When the server receives a query, it looks

up the index and return the most relevant video to the querier.

A. Problems

While designing an efficient and accurate FoV based crowd-

sourced mobile video retrieval system, we must solve the

following questions:

1. Rational similarity measurement over FoV
FoV used to be a concept about videos with stable locations

and orientations in previous research findings [8] [10]. In

reality, the FoV of the video will also be dynamic since

location and orientation of the camera cannot be a constant

value. Thus, there must be a rational measurement to help us

distinguish between different FoVs.

2. Sound segmentation algorithm for mobile video
In a piece of mobile video, FoV may keep changing along

with the user’s movement. When an inquirer activates a search

request, it is uneconomical to upload the whole video if there

is few useful FoVs. Therefore, an FoV similarity based video

segmentation algorithm is needed for both the server side and

the client side. On one hand, the server can set up the index

according to different FoVs. On the other hand, uploading the

relevant video segment targeted to the query can save a lot of

web traffic.

3.Efficiency on the client side
The preprocessing of the video needs to be performed on

the client side as it is never economical to upload the whole

video after capturing. However, performing traditional CV al-

gorithms on the client side is not applicable since smart phones

are resource limited as always. Efficiency must be taken into

account in algorithm design and system implementation.

4.Time-sensitive index over FoVs
Existing indexing schemes on FoVs only consider the stable

location information of the FoV [10], which can be easily

solved by the sophisticated spatial indexing technology. In real

situations, FoV of the camera keeps changing their location

along with the users’ movement. In other words, both video

clips and FoVs are always time-sensitive. The query of an

inquirer may also contain a specific time interval. How to

efficiently index the spatio-temporal information of all the

FoVs is still unsolved by the previous work.

252251251251251251

Cloud Server

Client::Participants

Video

Segment

Client::Querier

Video

Capture

FOV

Indexing

FOV

Ranking

Fig. 1. System Architecture

B. FoV

Generally speaking, we use video frames to describe the

content of a continuous video. A video frame is a single

picture that is shown as part of a larger video. Each video

consists of a sequence of video frames. Traditional descriptors

all focus on the visual feature of the video frames and try to

use matrixes or vectors to describe the video content. However,

both matrix and vector based video features are not applicable

for crowdsourcing systems, since the extraction and similarity

measurement are time-consuming.

To address this question, we recall the details when record-

ing a video clip. By common sense, we know that when a

subscriber is capturing videos with their smart phones, the

camera will cover an visible area. Meanwhile, according to the

principle of optical imaging, this area is a conical space and it

will change along with the movement of the user. FoV(Field of

View), as its name, ably helps to describe this area. It is a video

descriptor which focuses on the field of view of each video

frame. Compared with the traditional descriptors, negligible

data size and low dimension are the major characteristics of

FoV.

In our work, FoV is defined in the form of 2-tuple in order

to describe the vertex and vertex angle of the conical area:

f = (p, θ), (1)

where p stands for the GPS location, consisting of

p.lat(latitude) and p.lng(longitude), and θ stands for the

azimuth angle of camera.

Moreover, every camera is born with a fixed viewing angle

A = 2α. Thus, the angle range covered by the camera is

Θ = (θ − α, θ + α).

C. System Overview

With the help of FoV, we propose an efficient crowd-sourced

mobile video retrieval system. As Figure 1 illustrates, there are

four major components in our system: (1) video capturing;

(2) video segmentation and representative FoV extraction; (3)

representative FoV indexing; (4) rank based retrieval. Here is

a brief overview about the system workflow.

When a user is capturing a video with his/her smart phone,

the orientation and location information of the device will

be synchronously collected at the backstage. Meanwhile, the

application merge these two kinds of information with the

timestamp to the form of (ti, pi, θi), where ti, pi and oi repre-

sent the timestamp, location and azimuth angle corresponding

to the ith frame. And this data record will directly passed to

the module of video segmentation on the client side.

A real-time video segmentation is implemented in the

segmentation module. It absorbs the incoming data record and

make a decision on whether to segment the video in O(1)

time complexity. If so, the start time and the end time of the

current video segment will be recorded and the representative

FoV (including the time interval and representative location

and azimuth orientation) will also be obtained in real time.

After the user stop video capturing, the segmentation mod-

ule will end at the same time, and we can get a set of FoVs

each of which represents a video segment. The set of FoV will

be uploaded to the cloud server.

The server maintains a dynamic index structure for the

upload FoVs. In the structure, time interval and location

information are considered so that the retrieval efficiency can

be guaranteed.

An inquirer may activate a search request with a query Q =
(ts, te, p, r), which indicates that he/she wants to search all the

videos that covers the circular area, with p as the center and

r as the radius, from start time ts to end time te. The server

will rapidly look through the index and return the inquirer a

list of search results. The elements in the list are sorted in

descending of relevance according to the query Q.

So far, we have given a brief introduction for our system

architecture and workflow. More details of each module will

be elaborated in the following sections.

III. SIMILARITY MEASUREMENT

While clients start recording videos via smart devices, a

background process is activated to track the FoV of each video

frame and determine when to segment video according to the

correlation of FoVs. In this section, an efficient and rational

similarity measurement over FoV will be introduced. Under

this similarity measurement, any pair of FoVs can be linked

together via a two-phase transformation. Compared to the

traditional vector based similarity(distance) measurement, FoV

based similarity measurement brings incredible high efficiency

in calculation and low cost in storage.

A. Similarity Measurement

Similarity measurement is a real-valued function that quan-

tifies the similarity between two objects. In the field of

information retrieval, most of the existing similarity(distance)

measurements are based on feature vectors/matrixes. For ex-

ample, when we want to get the Euclidean distance of two

vectors, it is essential to go through each dimension of the

feature vector and get the deviation of them. However, with

the proposed measurement, the similarity between two FoVs

can be obtained with a simple mathematical calculation, which

is far more lightweight than ordinary algorithms. In addition

253252252252252252

f1

f2

Ѳp

δѲ

d
R

ϕ
R

d

f1 f2

ϕ
R

d

f1

f2
f1

f2

δѲ

(a)

(d)(c)

(b)

Fig. 2. Schematic View

to the high efficiency, the evaluation also verify the rationality

of our algorithm.

Preliminaries:
f1 and f2 denote two FoVs which f1 = (p1, θ1) and

f2 = (p2, θ2) with their respective angle range Θ1 and Θ2. δp
denotes the distance between p1 and p2, and δθ denotes the

orientation difference. Thus, we have

δp = | �p1p2|, δθ = min(|θ2 − θ1|, 360− |θ2 − θ1|) (2)

Besides, in consideration of normalization, for ∀f1, f2
Sim(f1, f2) ≤ 1, (3)

Equation (3) holds if and only if f1 = f2(δp = 0 and

δθ = 0), which indicates the two FoVs are the same. Apart

from this, any increment in either δp or δθ will cause the

reduction in Sim(f1, f2).
As we all know, in Newtonian mechanics, any rigid body

motion can be divided into translation and rotation. Based

on this theory, while recording, we think of the motion of

mobile devices as a translation in δp and a rotation in δθ.

Under this proposition, any FoV can be associated to the

other. In the following paragraphs, we will interpret these

two circumstances separately and elaborate how they can be

combined together.

Case 1: Rotation
When a rigid body is rotating, the barycenter of it keeps

fixed and other parts of it move around the center. In this

paper, the rotation situation is that the location of the camera

stands still and the orientation of the device changes. As shown

in Fig. 2(a), the rotation will cause the change of δp = 0 and

δθ �= 0. Intuitively, we make the coverage intersection be the

similarity between two FoVs.

SimR(f1, f2) =
|Θ1 ∩Θ2|
|Θ| =

⎧⎨
⎩

2α−δθ
2α δθ < 2α

0 otherwise
(4)

Apparently, the intersection of f1 and f2 will decrease

with the increase of δθ, which cause the linear decrease of

similarity. When δθ comes to 2α and continues to rise up, we

can find that there will be no intersection between the two

sectors. In this circumstance, the similarity between the two

FoVs will stay at 0 before the camera turns around.

Case 2: Translation
Translation is the movement that changes the position of

an object, as opposed to rotation. A displacement is called a

translation if a body is moved from one position to another

and the lines joining the initial and final points of each of the

points of the body are a set of parallel straight lines.

In this case, f1 and f2 maintains the same orientation θ,

and f2 can be considered as f1 with a translation of distance

δp. However, the translation direction θp varies between 0◦ to

360◦, and the translation direction will affect the descending

rate of the similarity between them.

Without loss of generality, for arbitrary FoV pair f1 and

f2, with the help of orthogonal decomposition, the translation

from f1 to f2 can be divided into two steps, the parallel

translation and vertical translation (shown in Fig. 2(b) and

Fig. 2(c)).

Intuitively, the similarity of parallel translation, denoted

as Sim‖, decreases slower than that of vertical translation,

denoted as Sim⊥ Next, we will separately consider these

similarity functions about these two extreme cases.

Fig. 2(b) illustrates the situation of parallel translation,

where the translation of f2 is in the same direction with

θ. R represent the radius of the view we can see and d is

the translation distance. According to the optical principles,

relative to f1, the viewing angle covered by f2 is narrowed

from 2α to 2φ, which can be obtained by a a few steps of

triangular transformation:

φ‖ = arctan
R sinα

d+R cosα
, (5)

Fig. 2(c) illustrates the circumstance where the translation of

f2 in the vertical direction of θ. The angle φ⊥ can be obtained

by similar transformation:

φ⊥ = arctan

[
1 0

]
AB[

0 1
]
AB

, (6)

where A =

[
2R sin 2α −2 sin 2α
2R cos 2α 1− cos 2α

]
, B =

[
sinα
d

]
.

It is obvious that, under a same translation distance d, the

angle reduction of φ‖ is bigger than φ⊥.With the value of

φ‖(⊥), the transformation similarity can be obtained via a

unified equation:

Sim‖(⊥) =
φ‖(⊥)

2α
(7)

.

According to the mathematical calculation, we have follow-

ing statements about Sim‖ and Sim⊥:

254253253253253253

1.For the same radius R and translation distance d, the

following inequality always holds and the equality holds if

and only if d = 0
Sim‖ ≥ Sim⊥ (8)

2.With the increase in translation distance d, φ‖(⊥) will

shrink from Θ = 2α, which will result in the decrease

of similarity. However, Sim‖ will always be a positive real

number but Sim⊥ will drop to 0 when d reaches 2R sinα.

To sum up, Sim‖ and Sim⊥ represent the minimum and

maximum of the decreasing gradient of similarity. With the

propositions above, any translation of video cameras can be

divided into two steps. For example, when the translation of

f2 is in the direction of θp ∈ [0◦, 90◦] (see in Fig.2(d)) with

a translation distance d, we can have the translation similarity

by a weighted equation:

SimT (f1, f2) = (1− θp
90

)Sim‖ +
θp
90

Sim⊥ (9)

Case 3:Reality
In real life, any rigid movement can be seen as the combina-

tion of rotation and translation. Newtonian mechanics inspires

us separately consider the rotation and translation of FoVs, and

combine them together. Under this inference, for an arbitrary

FoV pair f1 = {p1, θ1} and f2 = {p2, θ2}, as shown in Fig.

2(d), f2 can be considered as a transformation, which consists

of a rotation of f1 in δθ and a translation with a distance δp
in direction of θp. The similarity between f1 and f2 can be

obtained by Equation (10).

Sim(f1, f2) = SimR × SimT (10)

In later chapters we will evaluate our theorem by comparing

FoV based measurement and computer vision based measure-

ment.

IV. VIDEO SEGMENTATION

Video retrieval systems absorb users’ preference and return

the relevant video clips. As what users want are always

piecemeal and originate from different videos, segmenting

vides into segments according to their content will help the

server set up an index structure for videos and retrieve what

the users exactly want as efficient as possible. In this section,

we propose a novel, FoV based, video segmentation algorithm

that can be performed in real time. Meanwhile, representative

FoVs of the segments will be extracted and uploaded to the

server. The following paragraphs will show the details of these

two algorithms.

A. Video Segmentation

When capturing videos with mobile phones, users will

inevitably hold the cameras and keep walking around. which

will result in the changes of FoV. In crowd-sourced video

retrieval systems, inquirers always want to fetch all the videos

that cover a specific location during a specific time interval.

This demand exactly corresponds with the definition of FoV.

In this case, FoV based mobile video segmentation algo-

rithm can help to classify the video segments according to

different fields of view. Since client users only need to upload

the relevant video segment instead of the full video, With the

optimization of the accuracy of video retrieval, the redundant

web traffic can also be minimized.

Here is a formal description of the proposed segmentation

algorithm, our purpose is to segment a continuous video into

S = {s1, s2, ..., sn}, where each element si represents a piece

of video segment. Each si consists of several FoVs, a start

time tsi and an end time tei.
As is discussed in the previous section, for any FoV pair

f1 and f2, f2 can be seen as the transformation of f1 with a

rotation in δθ and a translation in δp. Based on this hypothesis,

Algorithm 1 shows the pseudo code of the segmentation

algorithm.

Algorithm 1 Video Segmentation

Input: The FoV sequence of an video F = {f1, f2, ..., fn},
segmentation threshold thresh

Output: The segment set S = {s1, s2, ..., sk}, where si =
{s1, s2, ..., sni

}
1: ts1 = 1, te1 = 1, k = 1, S = Φ, fs = f1
2: //Time slot iterator

3: for each i ∈ [1, n] do
4: if Sim(fs, fi) < thresh then
5: //Segment the video and add the segment into S

6: tek = i− 1
7: S = S ∪ {sk}
8: //Initialize a new segment

9: k = k + 1, sk = {fi}, fs = fi
10: tsk = i, tek = i
11: else
12: //Add fi into the current segment sk
13: sk = sk ∪ {fi};
14: end if
15: if i = n then S = S ∪ {sk}
16: end if
17: end for
18: return S;

The input of the algorithm consists of a sequence of FoVs

F and the segment threshold thresh. The algorithm iterates

the time i and sequentially processes the corresponding FoV

fi. To get video segment sk, it just focus on the initial FoV fs
and the current FoV fi. If the change of the FoV has reached

the similarity threshold (Sim(fs, fi) < thresh), the process

will suspend and the current segment sk will be added into

the segment set S. Meanwhile, the algorithm will initial a new

segment with fi and continue with the segmentation process.

When the iteration is finished, we can get the result of the

segmentation S = {s1, s2, ..., sk}.
B. Segment Abstraction

After the video segmentation, each segment si in the set S
consists of several FoVs and FoVs in the same video segment

have similar fields of view and continuous timestamps. To

give segment si a further abstraction, we use the segment

255254254254254254

abstraction algorithm to extract the representative FoV fri
. By doing this, the original video can be concentrated and

represented by a set of representative FoVs. Users’ web traffic

of uploading will be minimized and the indexing structure on

the cloud side will be more targeted.

To get the representative FoV fri, all the FoVs in si will

be the input of the segment abstraction algorithm according

to the Equation (11). The location and orientation of fri will

be obtained by computing the arithmetic average of all the

elements in segment si. In addition, tsi and tei will also be

extracted and uploaded along with fri.⎧⎪⎪⎨
⎪⎪⎩

p̄i =

∑
p

|Si|
θ̄i =

∑
θ

|Si|
(11)

C. Complexity Analysis

Intuitively speaking, both video segmentation algorithm and

segment abstraction algorithm process the input data linearly

and come up with the output. For video segmentation, the

algorithm will go through the for-loop m times(m denotes

the number of FoVs, which is equivalent to the number of

video frames). Each loop will simply perform a similarity

measurement between two FoVs and decide whether to initial

a new video segment or not. On the other hand, computing

the arithmetic average will also cause linear time complexity

and no extra space complexity.

To sum up, for a set of FoVs S, the time complexity

to perform video segmentation and segment abstraction are

both O(|S|), which is theoretically the lowest. Moreover,

the experiment result expresses that both functions could

be implemented as intent listeners in a real-time invocation

environment.

V. RANK BASED VIDEO RETRIEVAL

After capturing mobile videos, representative FoV of each

video segment will also be extracted. As video contributors,

users can choose to upload these representative FoVs for video

retrieval. On the other hand, as video inquirers, when a video

search request is activated, the server will look up in the

index and return a series of relevant video segments. As there

can be pervasive video contributors and search inquirers, it

is necessary for the cloud server to maintain an efficient and

dynamic index to provide the efficient updating and retrieval.

In this section, we propose an R-Tree based FoV indexing

structure to index the representative FoVs uploaded from the

client users. The index structure takes the spatio-temporal

information of the representative FoVs into account so that

it can satisfy the demand for retrieval efficiency and accuracy.

When an inquirer performs a range based request, the server

will return a rank based result, containing all the FoVs that

have intersections with this range.

A. Setup of the FoV Index

R-tree is a height-balanced indexing structure to handle

spatial data [11]. In R-tree, data objects are represented by

intervals and they often cover areas in multi-dimensional

spaces. It is the MBRs(Minimum Boundary Rectangles) of the

data object that are stored and managed in the tree. So an R-

Tree is good at answering range-based query. When searching

in R-Trees with a query rectangle Q, the search algorithm

descend from the root node and retrieve all the MBRs that

intersects with Q. R-Tree based indexing scheme can be used

to index the spatio-temporal information of the representative

FoVs perfectly. In normal cases, an R-Tree is used to index

multidimensional rectangles. Each rectangle is described as

two double arrays min[] and max[], which represent the

minimums and maximums of all dimensions. In FoV index,

for each representative FoV fr = (p̄, θ̄) with segment start

time ts and end time te, we construct an FoV rectangle with

min[] = [p̄.Lng, p̄.Lat, ts] and max[] = [p̄.Lng, p̄.Lat, te] and

insert it into the R-Tree. As we can see that both arrays

share the same values in the first two dimensions, each FoV

rectangle draws a segment in 3-d space.

B. Rank Based Retrieval

When performing an retrieval, the input will also be a

rectangle R with min[] and max[], and the R-Tree will return

all the rectangles that have intersection with R. In this paper,

an inquirer will send a search request by Q = (ts, te, p̂, r̂),
where ts and te represent the start time and the end time of

the request interval and p̂ and r̂ represent the center position

and the radius of the query range. The server converts r̂ to the

longitude scale r̂.Lng and latitude scale r̂.Lat corresponding to

p̂ and constructs an query rectangle R̂ with the spatio-temporal

information embedded in Q and perform a retrieval in the R-

Tree, where min[] = [p̂.Lng − r̂.Lng, p̂.Lat − r̂.Lat, ts] and

max[] = [p̂.Lng + r̂.Lng, p̂.Lat + r̂.Lat, te]. Then the server

will return all the representative FoVs that have both spatial

overlap and temporal overlap with R̂.

However, traditional intersection based retrieving scheme

need to be modified due to the following reasons.

First of all, intersections of MBRs don’t make sense in FoV

based retrieval systems. The spatial information in an FoV

reveals the location of the device. However, inquirers never

want to know where the cameras are. The only thing they

care about is whether there is a video segment covering the

query range they want.

Secondly, the scale of the query range is hard to decide.

The value of the radius determines the size of the query

rectangle we choose. There is a tradeoff between accuracy

and efficiency. A smaller r̂ will help to improve the search

efficiency, but representative FoVs out of the query rectangle

might be ignored. Similarly, the increase of r̂ will also affect

the above two metrics.

At last, besides the spatio-temporal information, the search

mechanism must take the orientation information into account.

Since smart phone cameras have a limited viewing angle,

different orientations of the cameras will cause different FoVs

even they share the same position. For example, if a user

is capturing the video of Angela Dorothea Merkel on the

256255255255255255

grandstand, the video is still useless for an inquirer who wants

to see the World Cup Final even the user is in the first row.

To deal with these challenges, we design a filtering mech-

anism based on the traditional retrieving scheme.

1.Based on the inquirer’s configuration, to generate a rea-

sonable query rectangle, an empirical radius of view is selected

to form the query range, e.g. 20m for the residential area and

100m for the highways, .

2.Because there could be trees of walls obscuring our vision,

closer FoVs will have a higher probability to cover the query

area. As a result, FoVs retrieved from the R-Tree are sorted

by the distance between the FoV and the circle center p̂.

3.By iterating the retrieved representative FoVs, the server

will exclude the FoVs that have the improper direction and

rank the remaining by the distance to query point p̂
4.According to the inquirer’s requirement, the top N records

among the results will be return to the inquirer.

VI. IMPLEMENTATION AND EVALUATION

A. Implementation

The prototype system can be divided into two parts, the

client application and server program. The client application

is implemented with android SDK 11 and the server side is

implemented with Java1.6. Meanwhile, thanks OPENCV ,

for providing us with its comprehensive CV interfaces and

algorithms.

Transformation of GPS Information
The location information obtained from the embedded GPS

chip is in the form of (Lng, Lat), which represent the lon-

gitude and the latitude of the device. For a pair of FoVs

f1 = (p1, θ1) and f2 = (p2, θ2),where p1 = (Lng1, Lat1)
and p2 = (Lng2, Lat2), it needs a transformation to get the

translation distance δp and translation orientation θp.

We consider the Earth as a regular sphere with the radius

re = 6378140m. The longitude and latitude of the earth are

evenly divided into 360 parts respectively. Since the space

covered by an FoV is relatively small to the size of the Earth,

we consider δp and θp to be in the Euclidean space.

The equation of the components are as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δpx =
2πre cos

Lng2−Lng1
2

360
(Lng2 − Lng1)

δpy =
2πre(Lat2 − Lat1)

360

δp =
√
θpx

2 + θpy
2

θp = arctan
δpx
δpy

(12)

Clock Synchronization
In our system, crowd-sourced videos are captured with

different mobile devices by different subscribers. In most

situations, every device has its own local clock and clocks

of different devices, as well as the server, are usually un-

synchronized. However, all the COTS devices support clock

synchronization service via the satellites. Devices can easily

have subsecond time deviations from the global clock with

NTP/SNTP. Meanwhile, video retrieval systems are not sensi-

tive to time deviation because a video of several milliseconds

will make negligible difference to users’ cognition. Thus, we

don’t need to perform a supernumerary clock synchronization

between clients and the server.

B. Evaluation

We use off-the-shelf devices to evaluate the performance of

our system from different aspects. The client application is

implemented on HTC New One, with 1.7GHz quad processor

and 2GB RAM. The server side is implemented on Macbook

Air MD761.

As is proposed before, for any FoV pair f1 and f2, f2 can

be seen as a 2-phase transformation of f1, which consists

of a rotation of δθ and a translation in distance of δp and

orientation of θp. The similarity of f1 and f2 can be obtained

by SimR multiplied by SimT . And SimT is also based on

two components Sim‖ and Sim⊥.

As previously described, rotation and translation will both

affect the similarity between two FoVs. The decrease of SimR

is proportional to the angle δθ, until SimR falls to 0. On the

other hand, the decrease of SimT is relevant to the translation

distance δp and translation orientation θp, as well as the radius

of view R. Fig. 3 illustrates the theoretical value of the two

extreme cases, Sim‖(above) and Sim⊥(below), where θp =
0◦ and θp = 90◦.

20
24

28
32

36
40

0 4 8 12 16 20

0

0.25

0.75

0.5

1

radius(m)

distance(m)

S
im

ila
rit

y

Fig. 3. Translation Similarity Model

1) Similarity Measurement: To prove the rationality of the

model, we perform two kinds of experiments. We capture

two kinds of videos when walking down the street, with

θp = 0◦ and θp = 90◦, which correspond to the formal two

circumstances.

Fig. 4 plots the comparison between the theory value and

practice value. In each subfigure, the blue line indicates the

theoretical value of Sim‖ (or Sim⊥)and the the red line

indicates the calculation result by the collected data from

the smart phone sensors. Then we use frame differencing

algorithm(as a representative of CV algorithms) to get the

normalized similarity between frames and plot them in green

lines. By observing the R,G,B lines in each figure, we can find

257256256256256256

0 10 20 30 40 50 60 70 80 90 100
0.4

0.5

0.6

0.7

0.8

0.9

1

Distance(m)

S
im

ila
ri
ty

Theoretical

 Practical

Vision Based

(a) Parallel Translation(R=100)

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Distance(m)

S
im

ila
ri
ty

Theoretical

 Practical

Vision Based

(b) Vertical Translation(R=20)

Fig. 4. Translation similarity(Theoretical V.S. Practical V.S. CV Algorithm)

that lines in each figure share a similar trend in descending.

Sim⊥ decreases more rapidly than Sim‖, which is consistent

with our theoretical analysis.

In real circumstances, all the situations can be seen as

a combination of rotation and translation. Fig. 5 illustrates

the comparison between FoV based similarity and frame

differencing based similarity in different situations. In each

subfigure, the color of red indicates that the corresponding

two FoVs(or frames) are highly similar while the color of

blue indicates that they are less similar to each other.

Case 1: Rotation
In this experiment, the client user holds the video camera

and rotates. The diagonal in the FoV based similarity rectangle

in Fig. 5(a) reveals the previous hypothesis. When the user is

rotating, the similarity between two FoVs will decrease with

the rotation angle θ. When θ surpasses the viewing angle of

the smart phone camera, the similarity will stays as 0 since

there is no intersection between these two FoVs. It is also

applicable when using vision algorithm.

Case 2:Translation
The experiment of translation situation is performed by a

user driving down the street and capturing the view in front

of car. So we make R = 100m. The similarity will decrease

gradually when the driving distance d grows. We can discover

this pattern by scanning the similarity rectangles horizontally

from each subfigure in Fig. 5(b). In this situation, the similarity

won’t drop to 0 even the translation distance is long.

Case 3:Reality
In this experiment, the user captures the video when riding

his bike in a residential area. In the middle of the ride, he turns

right so the FoV similarity rectangle in Fig. 5(c) is divided

into four parts. FoVs in the first half and second half have no

intersections so the upper-left and lower-right parts are in blue.

This pattern can also be found in the vision based similarity

rectangle on the right. We can see that the blue cross in the

rectangle reveals the turning event. Though the upper-left and

lower-right of the rectangle shows that there are still similar

pixels, it represents nothing since FoV already tells us that the

field of view has completely changed.

2) Video Segmentation:

(a) Rotation Situation

(b) Traslation Situation

(c) Reality

Fig. 5. Correlation between the two similarity measurement

Video segmentation will be executed on the smart phones

while the users are capturing videos. To evaluate the perfor-

mance of our algorithm, we implement the off-line editions of

FoV based and CV based segmentation algorithms.

Fig. 6(a) plots the efficiency of different video segmentation

approaches. Apparently, it is more time-consuming when the

videos are in higher resolution. As FoVs are resolution-

independent, it is at least three orders of magnitude faster

to perform an FoV based segmentation on a video of same

length.

To evaluate the indexing and retrieving performance, we

258257257257257257

10 20 30 40 50 60
10

0

10
2

10
3

10
4

10
5

Video Length(s)

S
eg

m
en

ta
tio

n
T

im
e(

s)

FoV 720P 480P

(a) Efficiency of segmentation approaches

0 0.4 0.8 1.2 1.6 2

x 10
4

0

0.4

0.8

1.2

1.6

2
x 10

4

Number of Data Records

In
de

xi
ng

 T
im

e(
m

s)

(b) Setup Time

0 0.5 1 1.5 2

x 10
4

0

50

100

150

200

Number of Data Records

S
ea

rc
h

T
im

e(
m

s)

R−Tree Based Search
Linear Search

(c) Retrieval Efficiency

Fig. 6. Segmentation, Indexing and Retrieval

randomly simulate citywide representative FoVs and perform

insertion and search operations on the tree structure.

Fig. 6(b) plots the time performance of setting up the index.

It takes no more than 20 seconds to insert 20,000 records on

an off-the-shelf laptop. In other words, on average, it just cost

milli-seconds to insert a new incoming representative FoV.

Then we compare the searching performance of our index

structure with the naive linear search. The definition of FoV

has greatly reduced the data size of the video descriptor and

computation cost on video segmentation, and the R-Tree based

indexing structure will further reduce the searching cost. As

Fig. 6(c) illustrates, when the number of data records is small,

the cost of performing a linear search is close to that of

performing an R-Tree based search. However, when the size of

data grows bigger, the advantage of R-Tree gradually emerges.

VII. DISCUSSION

Radius of View and Segmentation Threshold
Radius of view R and the segmentation threshold thresh

can affect the sensitivity of FoV similarity measurement and

video segmentation. Intuitively speaking, the similarity would

decrease slower when R gets bigger and when threshold gets

bigger, the segmentation of video would be denser.

Both arguments will affect the performance of video re-

trieval. In our system, the assignment of R and thresh is

determined by our empirical observation. However, there are

possibilities to adaptively assign the values of R and d. For

example, Google Maps can help us do the site survey. By

analyzing the visual features on the map, radius of view and

segmentation threshold could be estimated.

Video Utility and Incentive Mechanism
Our system is a transformation of Mobile Crowdsourced

Sensing(MCS) application. The utility of a video according

to a query can take the utility of angular coverage Ua and

temporal coverage Ut into account. In this case, for a query

Q, the global utility can be defined as 360◦ × (te − ts) and

the utility of a certain video is the size of the sub-rectangle

area which depend on the Ua and Ut of the representative

FoV. Since the utility rectangles of different videos may have

intersections, this utility function is non-negative monotone

submodular. The utility of a FoV set U(S) is the size of the

polygon, which is the union of all the utility rectangles of the

FoVs in S.

With our definition of utility, the interaction between client

user and cloud server can be considered as a zero arrival-
departure interval case, and we can set up an incentive

mechanism when the inquirer has a reserved budget.

VIII. RELATED WORK

Crowd-Sourced Video Systems
Crowd-sourced video retrieval needs the collaboration be-

tween server and client users(smartphone subscribers). The

existing systems entrust the client users upload the videos

and make the server do the video collection, management and

retrieval. [12] proposes a mobile video streaming framework,

which provides efficient video streaming services for each

mobile user. [13] presents an effective car video retrieval

system. The vehicles transfer the videos captured by driv-

ing recorder up to the mobile video cloud and the server

adopts SIFT feature to search the probable video segments

of traffic accidents. [14] implements the scalable system

GigaSight,which is a hybrid cloud architecture, to manage

first-person video from mobile devices. To cope with privacy

issues, the author propose denaturing the privacy content

using computer vision algorithms. Similarly, in [15] videos

captured by smart glasses are uploaded to YouTube and all the

corresponding information(including URL) are maintained in

a SQL database. [16] proposes a crowdsourcing based video

traffic surveillance framework. The system exchanges video

clips with smartphone users to obtain an intelligent traffic

surveillance. However, all these systems never take the rich

geo-information of the crowd-sourced videos into considera-

tion. Besides, we can never guarantee the network environment

around the users. Under this uncertainty, uploading raw video

data become unrealistic for smartphones.

Multimedia Descriptors
Retrieval for multimedia has been a research hotspot since

1990s. Generally speaking, descriptors used to represent the

content of the multimedia data fall into two categories, global
features and local features. Global features,e.g. color Gist [17],

HLAC [18], focus on the overall distribution of an image and

they can satisfy some low-level content-based retrieval in a

short period of time. On the other hand, SIFT(Scale Invariant

259258258258258258

Feature Transform) [19] and its variants [20] [21]are among

the most frequently used local features. The extraction of

feature points enables the robust and accurate description of

image and video contents. However, it also brings high time

space complexity. Accelerating SIFT descriptor has been being

a research issue up to now. Resource-limited smart phones

cannot afford the heavy burden of computation.

FoV Based Video Systems
Multimedia with geo-information has become a research

issue in 2003 [22].FoV helps us manage the multimedia data

better. [8] modeled the viewable scene in a geospatial video,

which is the prototype of FoV. In [8], viewable scenes are

estimated as rectangles. Later, FoV is remodeled as a vector in

[23] to improve the search accuracy. Considering the distance

between FoV and the query place, [24] gives a rank to

the FoVs that have intersections with the query range. The

research work above have propose the theoretical system of

FoVs. However, all of them think of FoV as a static area,

omitting that the FoV of a mobile video could change along

with the user’s movement. Moreover, videos are time-sensitive

to the query as well as the corresponding FoVs. All of the

proposed search schemes cannot be applicable in mobile, time-

sensitive situations.

IX. CONCLUSION

In this paper, we propose a rational similarity measurement

over FoVs, which shows high efficiency and good compliance

with the visual descriptors. Based on our measurement, real-

time video segmentation and segment abstraction algorithms

are implemented on smart phones. Moreover, a dynamic time-

sensitive FoV indexing structure is maintained on the cloud

side. Inquirers can activates a search request by a spatio-

temporal interval and the server will return a rank based result

based on the quality of each mobile video segment.

X. ACKNOWLEDGEMENT

This work is supported by NSF China Major Program

61190110 and National High Technology Research and De-

velopment Program of China (863 Program) under Grants

No.2015AA01A201. Kebin Liu is the contact author. We thank

all the reviewers for their valuable comments and helpful

suggestions.

REFERENCES

[1] W. Hu, N. Xie, L. Li, X. Zeng, and S. Maybank, “A survey on
visual content-based video indexing and retrieval,” Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE Transactions on,
vol. 41, no. 6, pp. 797–819, 2011.

[2] P. Viola and M. Jones, “Robust real-time face detection,” International
Journal of Computer Vision, vol. 57, no. 2, pp. 137–154, 2004. [Online].
Available: http://dx.doi.org/10.1023/B%3AVISI.0000013087.49260.fb

[3] B. A. Fisher and D. R. Fisher, Techniques of crime scene investigation.
CRC Press, 2012.

[4] D. Gutchess, M. Trajkovics, E. Cohen-Solal, D. Lyons, and A. K. Jain,
“A background model initialization algorithm for video surveillance,”
in Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE
International Conference on, vol. 1. IEEE, 2001, pp. 733–740.

[5] P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha, and M. Satyanarayanan,
“Scalable crowd-sourcing of video from mobile devices,” in Proceeding
of the 11th annual international conference on Mobile systems, appli-
cations, and services. ACM, 2013, pp. 139–152.

[6] J. Chen, R. Mahindra, M. A. Khojastepour, S. Rangarajan, and M. Chi-
ang, “A scheduling framework for adaptive video delivery over cellular
networks,” in Proceedings of the 19th annual international conference
on Mobile computing & networking. ACM, 2013, pp. 389–400.

[7] M. A. Hoque, M. Siekkinen, and J. K. Nurminen, “Using crowd-
sourced viewing statistics to save energy in wireless video streaming,”
in Proceedings of the 19th annual international conference on Mobile
computing & networking. ACM, 2013, pp. 377–388.

[8] S. A. Ay, R. Zimmermann, and S. H. Kim, “Viewable scene
modeling for geospatial video search,” in Proceedings of the 16th
ACM International Conference on Multimedia, ser. MM ’08. New
York, NY, USA: ACM, 2008, pp. 309–318. [Online]. Available:
http://doi.acm.org/10.1145/1459359.1459401

[9] S. Arslan Ay, L. Zhang, S. H. Kim, M. He, and R. Zimmermann, “Grvs:
a georeferenced video search engine,” in Proceedings of the 17th ACM
international conference on Multimedia. ACM, 2009, pp. 977–978.

[10] H. Ma, S. Arslan Ay, R. Zimmermann, and S. Kim, “Large-scale
geo-tagged video indexing and queries,” GeoInformatica, pp. 1–27,
2013. [Online]. Available: http://dx.doi.org/10.1007/s10707-013-0199-6

[11] A. Guttman, “R-trees: A dynamic index structure for spatial
searching,” in Proceedings of the 1984 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’84. New
York, NY, USA: ACM, 1984, pp. 47–57. [Online]. Available:
http://doi.acm.org/10.1145/602259.602266

[12] X. Wang, M. Chen, T. T. Kwon, L. Yang, and V. Leung, “Ames-cloud: a
framework of adaptive mobile video streaming and efficient social video
sharing in the clouds,” IEEE Transactions on Multimedia, vol. 15, no. 4,
pp. 811–820, 2013.

[13] K.-H. Lee, J.-N. Hwang, J.-H. Yoo, and K.-H. Choi, “Effective car video
retrieval using feature matching in a mobile video cloud,” in Distributed
Smart Cameras (ICDSC), 2012 Sixth International Conference on, Oct
2012, pp. 1–6.

[14] P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha, and M. Satyanarayanan,
“Scalable crowd-sourcing of video from mobile devices,” in Proceeding
of the 11th Annual International Conference on Mobile Systems,
Applications, and Services, ser. MobiSys ’13. New York, NY, USA:
ACM, 2013, pp. 139–152. [Online]. Available: http://doi.acm.org/10.
1145/2462456.2464440

[15] Z. Chen, W. Hu, K. Ha, J. Harkes, B. Gilbert, J. Hong, A. Smailagic,
D. Siewiorek, and M. Satyanarayanan, “Quiltview: a crowd-sourced
video response system,” in Proceedings of the 15th Workshop on Mobile
Computing Systems and Applications. ACM, 2014, p. 13.

[16] H. Wen, Q. Li, Q. Han, S. Ge, and L. Sun, “Poster: Crowdsourcing
for video traffic surveillance,” in Proceedings of the 12th Annual
International Conference on Mobile Systems, Applications, and Services,
ser. MobiSys ’14. New York, NY, USA: ACM, 2014, pp. 384–384.
[Online]. Available: http://doi.acm.org/10.1145/2594368.2601460

[17] A. Oliva and A. Torralba, “Modeling the shape of the scene: A
holistic representation of the spatial envelope,” International Journal
of Computer Vision, vol. 42, no. 3, pp. 145–175, 2001. [Online].
Available: http://dx.doi.org/10.1023/A%3A1011139631724

[18] N. Otsu and T. Kurita, “A new scheme for practical flexible and
intelligent vision systems.” in MVA, 1988, pp. 431–435.

[19] D. Lowe, “Object recognition from local scale-invariant features,” in
Computer Vision, 1999. The Proceedings of the Seventh IEEE Interna-
tional Conference on, vol. 2, 1999, pp. 1150–1157 vol.2.

[20] G. Zhao, L. Chen, G. Chen, and J. Yuan, “Kpb-sift: a compact local
feature descriptor,” in Proceedings of the international conference on
Multimedia. ACM, 2010, pp. 1175–1178.

[21] A. Abdel-Hakim and A. Farag, “Csift: A sift descriptor with color
invariant characteristics,” in Computer Vision and Pattern Recognition,
2006 IEEE Computer Society Conference on, vol. 2, 2006, pp. 1978–
1983.

[22] K. Rodden and K. R. Wood, “How do people manage their digital
photographs?” in Proceedings of the SIGCHI conference on Human
factors in computing systems. ACM, 2003, pp. 409–416.

[23] S. H. Kim, S. A. Ay, B. Yu, and R. Zimmermann, “Vector model in
support of versatile georeferenced video search,” in Proceedings of the
first annual ACM SIGMM conference on Multimedia systems. ACM,
2010, pp. 235–246.

[24] S. Arslan Ay, R. Zimmermann, and S. Kim, “Relevance ranking
in georeferenced video search,” Multimedia Systems, vol. 16, no. 2,
pp. 105–125, 2010. [Online]. Available: http://dx.doi.org/10.1007/
s00530-009-0177-x

260259259259259259

