

Lasagna: Towards Deep Hierarchical Understanding and Searching over Mobile Sensing Data

Cihang Liu, Lan Zhang, Zongqian Liu, Kebin Liu, Xiangyang Li, Yunhao Liu **Tsinghua University**, University of Science and Technology of China

- 1.Background
- 2.State-of-the-Art
- 3.Deep and Hierarchal Understanding of Mobile Sensing Data
- 4. Semantic Based Activity Search
- 5.Implementation & Evaluation
- 6.Conclusion & Open Issues

The Fascinating Smart Wearables

Market of smart wearables: •2016: \$30bn •2018: \$40bn •2023: \$100bn **Promising Industries:** •Healthcare & Medical •Fitness & Wellness Commercial •Military...

The Unsatisfying Smart Wearables

What wearables can do:
Step counting
Step counting
...

The Unsatisfying Smart Wearables

Potential Applications

•Keep a smart diary of our daily activities

•Achieve accurate working performance calculation

Potential Applications

Investigate civil health condition

 Study the cause of common occupational diseases

🥩 - Lasagna Makes Wearables Smart

Proposes deep hierarchical understanding of mobile sensing data
Enables Semantic Based Activity Search

(SBAS)

Physical Model based Methods

Handshake Model (SIGCOMM '11, poster)

Physical Model based Methods

Targeting specific activities Hard to spread to others

Feature Set based Methods

Various motion sensors with different feature sets (Sensors '14)

Mole (Mobicom '15)

Feature Set based Methods

Adopt statistical features Cannot provide satisfying results

Supervised Deep Learning based Methods

•DNN benefits the accuracy and robustness. (HotMobile '15)

•Using CNN and SVMs, features provide around 98% recognition accuracy. (ACM MM '15)

Supervised Deep Learning based Methods

Requires too much training data, training time and computation resource.

Challenges

Activity

•Human activities are **arbitrary**, and rich in **hierarchical** semanteme.

Data

•Data can be easily affected **diversities**. (device, people, timescale, etc.)

•Resource

•COTS devices are limited in resources. (battery, computation, etc)

3. Deep Hierarchical Understanding of Mobile Sensing Data

Q1: How to describe arbitrary activities?

Basis

Inspiration: Basis

A basis of a vector space V over a field F is a linearly independent subset of V that spans V. Spanning Poperty:

For every **x** in **V**, it is possible to choose $a_1, ..., a_n \in \mathbf{F}$, such that $\mathbf{x} = a_1 v_1 + ... + a_n v_n$

• For two points x_1 and x_2 ,

 $\mathbf{x_1} = a_1 v_1 + ... + a_n v_n$ $\mathbf{x_2} = a_1 v_1 + ... + a_n v_n$

 $\langle \mathcal{V} \rangle$ An <u>arbitrary</u> point can be <u>represented</u> by the basis.

 $\langle \mathcal{Y} \rangle$ Any two points are <u>comparable</u> according to the <u>embedding</u> (coordinates).

Convolution Kernel

Inspiration: Convolution Kernel

- Convolution kernels have been widely used in extracting \bigcirc the *latent* information.
- Different kernels can reveal different characteristics. \bigcirc

Edge
$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Gaussian $\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$

Sharpen $\begin{vmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{vmatrix}$

Box Blur $\frac{1}{9} \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$

Idea: Adopt kernels as Motion Basis

•1. Use *diverse convolution kernels* to reveal the characteristics of human activities.

•2. *Combine* kernels as *motion basis* to get comprehensive understanding.

An arbitrary activity can be represented by the basis

P Two activities are comparable according to the embedding.

CRBM Learns Motion Basis

Convolution Restricted Boltzmann Machine

Semantic Descriptor Extraction

Semantic Descriptor Extraction

Semantic Descriptor Extraction

•Our descriptor helps to distinguish different activities.

Q2: How to address hierarchical semanteme?

Inspiration: Reception Field

•The *Reception Field* refers to the kernel size. (3*5 in the figure)

•The *Reception Field* refers to the kernel size. (3*5 in the figure)

Idea: Hierarchical Reception Field

Idea: Hierarchical Reception Field

•1. Add an *Pooling Layer P* to pool the output of *H*.

•2. Stack multiple building blocks (feed V_2 with P_1).

Idea: Hierarchical Reception Field

Wernels in *higher* level have *larger* reception field!

4.Semantic Based Activity Search

SBAS

•Retrieve the *timespans* of the same activity according to the *activity* performed by an querier in *massive continuous* mobile sensing data.

SBAS

 Retrieve the timespans of the same activity according to the activity performed by an querier in massive continuous mobile sensing data

Different activities must get separated.

The search strategy must be efficient.

SBAS Architecture

- SBAS Architecture

•After model training, hierarchical motion basis is learned and descriptors can be extracted.

SBAS Architecture

Index Construction:

- 1. Take activity snapshots using different timescale
- 2. Cluster the snapshots according to their descriptors

SBAS Architecture

•Search:

- 1. Perform *cluster search* in the index
- 2. Merge the timespans of the cluster search results

5. Implementation & Evaluation

Android
Sony Smartwatch3
Tizen
Samsung Galaxy Gear

Model Training Server •4GHz i7 CPU •Titan x-12G •32G Ram SBAS Server •2.5GHz i7 CPU •16GB RAM

Architecture

Dataset#1(controlled)#1(un8 people (M:7,F:1)8 people11 activities11 + x act2.7GB(Over 320 hours)

•#1(uncontrolled)

8 people (M:7,F:1) 11 + x activities •**#2(controlled)** 10 people (M:7,F:1) 7 activities

323.9MB

Evaluation – Semantic Descriptor

Sensor	[14]	[15]	1-level	2-level	3-level
Accel	80.3	-	94.6	96.1	98.4
Gyro	71.8	-	82.1	82.9	91.4
Accel+Gyro	90.3	98.75	97.8	98.2	98.9

•For dataset#2, our 2-level hierarchical descriptor can provide comparable accuracy and the 3-level descriptor can provide even better performance.

*[14] M.Shoaib, S.Bosch, O.D.Incel, H.Scholten, and P.J.Havinga, "Fusion of smartphone motion sensors for physical activity recognition," Sensors, vol. 14, no. 6, pp. 10 146–10 176, 2014.

[15] W.Jiang and Z.Yin, "Human activity recognition using wearable sensors by deep convolutional neural networks," in Proceedings of the 23rd Annual ACM Conference on Multimedia Conference, 2015, pp. 1307–1310.

Evaluation – Semantic Based Activity Search

Three kinds of metrics are adopted:

Precision

•Recall

Time Overhead

*We adjust the search threshold to evaluate the precision and recall. Intuitively we have the tradeoff ,

Similarity Threshold

90% precision and almost 100% recall can be achieved.

•For Dataset [#1](**uncontrolled**), the decline is caused by the complex human motion and mislabeled groundtruth in the *uncontrolled* environment.

Evaluation – Semantic Based Activity Search

Data Size	1min	10min	1h	1d	10d(>2Gb)
Indexing Time(s)	0.001	0.02	0.55	7.89	71.63
Search Time(s)	0.0008	0.002	0.052	0.28	8.83

•Keeping running *Lasagna* at backstage only leads to about *10%* additional power consumption.

6. Conclusion & Open Issues

Conclusion

Deep hierarchical understanding

- Motion basis is learned in an unsupervised manner.
- Hierarchical semantic descriptor is extract from different resolutions.

Semantic Based Activity Search

• Efficient SBAS can be achieved on COTS laptop.

Database preprocessing

- Activity Segmentation
- Indexing
- ...

More advanced searching strategies

Cross-modal SBAS

Privacy issues

•...

Thanks!

Any questions?

Feel free to contact me at *cihang@greenorbs.com*

Hierarchical Semantic Descriptor

• Descriptors of a same activity **cluster** together.

* 2-level hierarchical descriptor with Euclidean distance as the similarity measure

Hierarchical Semantic Descriptor

• Mixed activities *bridge* those "pure" activities.

* 2-level hierarchical descriptor with Euclidean distance as the similarity measure

Evaluation - Kernel Number Selection

•A larger number of kernels helps to reduce error and sparsity.

*error: |input-reconstruction|, sparsity: mean(h)

Evaluation - Kernel Number Selection

•A larger number of kernels will also bring extra cost for storage and computation. *error: |input-reconstruction|, sparsity: mean(h)

The Unsatisfying Smart Wearables

What wearables can do:
Step counting
Step counting
...

Is step counting the only thing that smart wearables can do?

For example, with a kernel \widetilde{W}^k , 3*5 input units are mapped to 1 unit in the hidden layer.