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The electrocardiogram (ECG) has always served as a crucial biomedical examination for cardiac diseases monitoring and
diagnosing. Typical ECG measurement requires attaching electrodes to the body, which is inconvenient for long-term
monitoring. Recent wireless sensing maps wireless signals reflected from human chest into electrical activities of heart so as to
reconstruct ECG contactlessly. While making great progress, we find existing works are effective only for healthy populations
with normal ECG, but fall short when confronted with the most desired usage scenario: reconstructing ECG accurately for
people with cardiac diseases such as atrial fibrillation, premature ventricular beat. To bridge the gap, we propose AirECG,
which moves forward to reconstruct ECG for both healthy people and even cardiac patients with morbid ECG, i.e., irregular
rhythm and anomalous ECG waveform, via contactless millimeter-wave sensing. To realize AirECG, we first custom-design
a cross-domain diffusion model that can perform multiple iteration denoising inference, in contrast with the single-step
generative models widely used in previous works. In this way, AirECG is able to identify and eliminate the distortion due to
the unstable and irregular cardiac activities, so as to synthesize ECG even during abnormal beats. Furthermore, we enhance
the determinacy of AirECG, i.e., to generate high-fidelity ECG, by designing a calibration guidance mechanism to combat the
inherent randomness issue of the probabilistic diffusion model. Empirical evaluation demonstrates AirECG’s ability of ECG
synthesis with Pearson correlation coefficient (PCC) of 0.955 for normal beats. Especially for abnormal beats, the PCC still
exhibits a strong correlation of 0.860, with 15.0%∼21.1% improvement compared with state-of-the-art approaches.
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and mobile computing design and evaluation methods; Empirical studies in ubiquitous and mobile computing.
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1 Introduction
Cardiovascular diseases (CVDs) are the most critical health issue in the world, they take an estimated 17.9 million
lives per year and even show a growing trend [3, 35]. The Electrocardiogram (ECG) is a common and painless
test used to detect types of CVDs and monitor the heart’s health, which greatly helps disease management [5, 33].
Specifically, daily ECG monitoring and early diagnosis play important roles in controlling disease progression
and preventing adverse events [10]. Taking the most common arrhythmia as an example of CVDs, with the help
of daily ECG tests and effective clinical treatment like anticoagulation, serious complications like stroke and
even mortality can be prevented [26].
Due to the urgency and great demand for ECG monitoring, relevant technology development is high-profile,

particularly portable ECG devices that can achieve disease monitoring and management. As the general devices
for ECG examination, standard electrocardiograph and desktop ECG monitors are widely used, while they are
bulky and require electrodes attached to the skin. Wearable Holter [6] and ECG patches [4, 45] solve the problem
of device size, however, they still face negative issues from electrodes. Those electrodes may lead to unsatisfactory
experience and skin allergy, which hinders the daily ECG monitoring usage. Besides, the electrode attachment
limits ECG monitoring for specific patients, such as neonates and patients with skin damage. Newly released
smartwatches are equipped with a single lead ECG sensor, which requires the user to actively touch the electrode
button during ECG measurement, nevertheless such a design is not suitable for continuous ECG monitoring [24].
To achieve daily cardiac monitoring with passive and continuous advantages, wireless sensing solutions

have been explored to monitor the thorax wall vibration using WiFi [40, 41], RFID [30], and millimeter wave
(mmWave) radar [20, 39]. These works monitor the mechanical activities of chest caused by heartbeats, so as
to measure simple heart rate and its variability. Furthermore, latest works attempt to transfer the radar signal
into heart electrical activities as ECG [11, 42, 43], preliminarily achieving contactless ECG monitoring. Existing
methods are based on single-step generative neural networks, and perform reasonable ECG for users with normal
heartbeats. While for patients with morbid heartbeats, existing generative models may lose efficacy and lead
to ECG distortion. For instance, abnormal heartbeats of atrial fibrillation (AF) lead to invalid ECG generation
without cardiac features, resulting in disability to detect disease. To sum up, the contactless ECG for disease
monitoring is still challenging due to the abnormal heartbeats caused by diseases.
To bridge the gap, we propose AirECG, a contactless ECG measurement system that enables passive and

continuous disease monitoring for both healthy and cardiac patients in daily life. Fig. 1 illustrates the application
scenarios of AirECG, where we set up a low-cost mmWave radar [8] to sense the subject’s thorax wall vibration
through mmWave propagated in the air. Then we custom-designed a cross-domain diffusion model to transfer
the heart vibration in mechanical domain into ECG electrical domain, and our model provides faithful domain
transformation through the multiple denoising iterations and calibration guidance. In this way, AirECG can
provide an accurate ECG even during diseases like atrial fibrillation, premature beat, etc., so as to offer early
warnings and better treatment management. To realize AirECG, we identify and address two main challenges as
follows.

Modeling scarce and irregular morbid cardiac motions by cross-domain diffusion generative model.
Different from previous works focused on normal and healthy heartbeats, AirECG concerns investigating the

contactless ECG monitoring during abnormal beats. For healthy subjects, the inter-beat intervals of consecutive
beats are similar, and the cardiac activities inside each beat are the same (regular contraction and relaxation of atria
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Fig. 1. The usage scenarios of AirECG. AirECG can provide contactless ECG for disease monitoring, which is based on domain
transformation from mmWave mechanical domain to electrical domain ECG.

and ventricles). However, for patients with arrhythmia such as AF, the heartbeats become chaotic and irregular
[2], which makes the existing contactless ECG performance decline. The main reason is that sophisticated ECG
during arrhythmia can not be directly transformed from mmWave signal using single-step models like TCN
(Temporal Convolutional Networks) or GAN (Generative Adversarial Network) in previous work. Therefore, we
propose a cross-domain diffusion model, which can perform multiple iteration inference so as to synthesize and
revise electrical domain ECG based mechanical domain mmWave data. Despite the fact that abnormal heartbeats
are hard to synthesize directly, cross-domain diffusion can revise the incomplete ECG from the last iteration.
In particular, cross-domain diffusion is initialized from Gaussian noise and performs step-by-step denoising
inference based on mmWave. With the help of multiple-step revision deeply combined with mmWave, AirECG
can synthesize ECG even during irregular morbid heartbeats.
Enhancing ECG synthesis deterministic against generative model’s randomness nature. Both our

cross-domain diffusion model and previous ECG synthesis models are types of generative models. The randomness
of generative models arises from the principles of probabilistic design, such as the Gaussian initialization and
denoising procedure of diffusion models. For content generation in the field of image or text generation, the
ability to freely exert is welcomed to improve the diversity of generated content. However, when it comes to ECG
synthesis, the fidelity of model output is required. To this end, we design a neural network plug-in unit called
ECG calibration guidance, which controls the random denoise step of diffusion model based on cross-attention
guidance. Our design utilizes previous ECG waveforms from calibration device, thus it can provide personal
calibration information for the denoising process, avoiding output distortion when dealing with new subjects
apart from training data. In this way, the accuracy of contactless ECG monitoring can be further improved,
especially for abnormal heartbeats and unseen subjects.
We prototype AirECG on Texas Instruments IWR1443BOOST COTS mmWave radar [7, 8], while using the

ECG patch [4] as the calibration device and ground truth for training and evaluating AirECG. For datasets
collection, we recruit practical participants with medical professionals’ cooperation, then collect mmWave
data with typical types of cardiac diseases, e.g., atrial fibrillation (AF), premature ventricular beat (PVC). We
also perform 5-fold user-dependent and user-independent validation on 109,598 heartbeats to in-depthly verify
the performance of AirECG. Overall, AirECG achieves compelling performance, showing a Pearson correlation
coefficient (PCC) of 0.955 for normal beats. Especially for abnormal beats, the PCC still exhibits a strong correlation
of 0.860, with 15.0%∼21.1% improvement compared with state-of-the-art approaches. We further validate the
arrhythmia detection performance as a downstream application, which shows 98.82% accuracy and 0.97 F1-score
to discriminate normal or abnormal heartbeat.
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Contributions: Our contribution can be summarized as follows,
• We propose a novel cross-domain diffusion model, which transfers mmWave signal modulated by cardiac
motion in mechanical domain, into ECG waveform in electrical domain.

• We design an ECG calibration guidance plug-in based on cross-attention module, so as to avoid free
generation of diffusion model, and further improve ECG synthesis fidelity.

• We prototype and validate AirECG system with multiple types of arrhythmia diseases, through the collabo-
ration of medical professionals. To our knowledge, this is the first-of-its-kind field test of contactless ECG
evaluation with arrhythmia patients.

To contribute to the IMWUT community, we will update our source code and sample data at https://github.
com/LangchengZhao/AirECG.

2 Understanding Contactless ECG Monitoring
In this section, we first introduce the basics of heart activities and principles of contactless ECG with mmWave
radar. Then we examine the practical challenges of contactless ECG and find that existing ECG generation
approaches lose efficacy and lead to ECG distortion in cases of arrhythmia patients exhibiting irregular morbid
beats.

2.1 Wireless Cardiac Sensing

(a) How mmWave capture heart activities

Time (s)
0 1 2 3 4

R peak

R’

Phase ECG

(b) ECG and corrsponding mechanical activities

Fig. 2. Chest vibration changes the phase of mmWave signal. (a) is the sketch of mmWave cardiac sensing. (b) is an example
of mmWave phase, filtered cardiac phase, and corresponding ECG ground truth. The mmWave filtered phase shows similar
periodicity with ground truth, proving the feasibility of mmWave cardiac sensing.

A human heart is approximately 120mm in length, 80mm in width, and 60mm in thickness [38]. The heart
can be divided into four chambers as Fig. 2(a) shows: the left and right atria (upper half), and the left and right
ventricles (lower half). The atria are responsible for receiving the blood flowing back to the heart and pumping it
into ventricles, while the ventricles can store the blood and pump it throughout the body. The mechanical activity
of the heart is stimulated by the electrical activity of the heart, while the gold standard in medical practice is the
electrical activity, which is described in the form of Electrocardiogram (ECG). The upper half of Fig. 2(b) shows
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Fig. 3. Examples of generated contactless ECG from mmWave via existing method. (a) shows the ECG generation with high
accuracy during normal heartbeats. (b) is the ECG generation when arrhythmia (atrial fibrillation) occurs, showing limited
signal fidelity.

an ECG signal example of single cardiac cycle, where P wave represents atria depolarization, QRS complex for
ventricular depolarization and T wave for ventricular re-polarization. It should be noted that atria re-polarization
is covered by ventricular depolarization in QRS complex.
Fig. 2(a) illustrates the sketch of wireless cardiac sensing. In a normal cardiac cycle, the atria and ventricles

contract sequentially and regularly, inducing vibration of 0.2-0.5mm in different parts of the thorax wall [16, 25].
Such vibration can be captured by mmWave radar, which emits mmWave to the thorax wall and receives the
reflected signal that contains cardiac vibration information. We define the thorax wall vibration as 𝑑 (𝑡), which
can be extracted from the phase 𝜙𝑡 of reflected mmWave signal as Equation. 1, where 𝜆 is mmWave wavelength.

𝑑 (𝑡) = 𝜆 ∗ 𝜙𝑡
2𝜋

(1)

As mentioned above, mmWave radar records the mechanical activities of hearts as 𝑑 (𝑡). The mechanical
activity of the heart is generated under the stimulation of electrical activity, i.e., the mechanical contraction of
heart is initiated by electrical depolarization [32]. To verify the relationship between electrical and mechanical
activities, we plot the synchronous mmWave phase 𝜙𝑡 and ECG of a 4s segment in Fig. 2(b). The orange dashed
line is the ECG captured by ECG patch [4], and the blue line plots the phase of mmWave. Since vibration caused
by respiration is much greater than that of heartbeats, the phase of mmWave is processed with band pass filter to
eliminate respiration and thereby shows the heart activity. We can find the peaks of heartbeats noted as R′, that
corresponds to the ventricle depolarization R peak of ECG. Either R′ or R shows peaks in 4s, i.e., heart rate at
60beats/min. To sum up, the consistent cardiac cycle between mmWave and ECG can prove the correspondence
between electrical and mechanical activities of the heart, which brings the feasibility of contactless cardiac
monitoring.

2.2 Limitations of Contactless ECG Monitoring during Arrhythmia
To achieve contactless ECG monitoring, existing methods CardiacWave [43], CTL-ECG [11] or RF-ECG [42]
transfer wireless signal into electric domain ECG signal. These methods utilize LSTM, TCN or cGAN (Conditional
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GAN) models respectively for ECG generation, in particular, taking wireless signals as input and generating the
ECG-like signals through one-step or autoregressive (one sample point each time) inference. These methods for
ECG generation perform well during regular heartbeats with healthy people. We implement the latest contactless
RF-ECG[42] using mmWave radar, where mmWave works as conditional information for ECG generation by
cGAN. Fig. 3(a) shows a 5-second period of contactless ECG during normal heartbeats in orange line, while the
blue dashed line plots the ground truth from ECG patch. The consistent relation between two ECG waves shows
qualified performance with normal heart beats.
During normal heartbeats, the electrical impulse is produced by sinoatrial node of the heart in Fig. 2(a), and

the impulse travels to atria and ventricles sequentially for depolarization, resulting in regular P-wave and QRS
complex respectively. However, during atrial fibrillation (AF), i.e., when completely irregular heartbeats occur,
the ECG changes a lot. Specifically, as shown in the ground truth of Fig. 3(b), abnormal electrical impulses are
wrongly and irregularly produced by atria, thus rhythm and amplitude of QRS-complex become irregular. Besides,
normal P-waves disappear and are replaced by tremor waves (f-waves) of varying sizes and shapes. In such
conditions, we found existing solutions show a performance degradation. As Fig. 3(b) shows, the cGAN model
can capture the vast majority of heartbeats from mmWave, and attempts to synthesize them into ECG waves.
While we find that the synthesized ECG is not well fitted with the ground truth ECG, i.e., the generated ECG in
orange line exhibits inconsistent cardiac features compared with blue dashed ground truth. In particular, (i) the
morphology of each heartbeat exhibits low amplitude in the QRS-complex, and the details of f-waves disappear.
(ii) Some heartbeats fail to be synthesized, such as the second and penultimate beats. Thus the rhythm and
morphology of ECG are inconsistent between generated ECG and ground truth, leading to inadequate signal
fidelity for disease monitoring.

The reason for such phenomenon is the sophisticated and irregular cardiac activities during AF, which make it
difficult to realize mechanical-electrical domain transformation through prior models. In particular, for prior
LSTM, TCN or cGANmodels, sample points of ECG are generated in a single step without revision. However, when
facing sophisticated synthesis like AF, these models lead to performance decline due to insufficient generative
ability. The limitations of single step generative models can be summarized as, (i) limited generalization capability
caused by the direct training objective from source domain to target domain, which has negative performance
impacts on varying data distribution of test datasets. Especially for AF diseases, the test data varies a lot compared
with training datasets, such as the rhythm, f-wave frequency. (ii) When the model inference is in single step, it
means that the output cannot be augmented or revised any more.
For sophisticated content synthesis, the denoising diffusion probabilistic model (DDPM) [23] has shown its

potential in image [17, 23] and audio generation [12]. Multiple iteration denoising has been proven [23] to be able
to generate more sophisticated and irregular distributions in the image field. In recent studies, the feasibility of
sequential signal generation and domain adaption has been validated, i.e., RF-Diffusion [14] is the first generative
diffusion model for RF signals based on a novel time-frequency diffusion theory, XFall [15] proposes a novel
domain-generalized model design forWi-Fi-based fall detection. In this paper, we aim to custom-design a diffusion-
based model to realize sophisticated mechanical-electrical domain transformation, so as to achieve contactless
ECG for cardiac disease monitoring. The advantages of multi step diffusion against single step models are in
two aspects, (i) The generalization capability improves since the training objective is optimized into multiple
iteration denoising rather than direct synthesis, which will be further discussed in Sec. 7.2 (ii) With the help of
more inference steps as augmentation, the synthesis ability can increase gradually as discussed later in Sec. 6.5.
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Multiple Iteration Inference

1st Iteration

Final ECG
Output

Fig. 4. The overview diagram of AirECG, which captures the cardiac activities through mmWave radar and then transfers
them into ECG through cross-domain diffusion model. Additionally, an ECG calibration guidance module is proposed to
eliminate randomness of generative process, thereby supporting faithful and high accuracy contactless ECG.

3 System Overview
In this section, we give AirECG’s system overview. AirECG focuses on contactless ECG for disease monitoring
using mmWave radar signals. Fig. 4 illustrates the overview of AirECG, which consists of cross-domain diffusion
and ECG calibration guidance.
AirECG captures the mechanical activities of hearts from mmWave radar, and then transfers them into ECG

signals in electrical domain through cross-domain model. Specifically, regarding the workflow of AirECG, the
mmWave signal processing is firstly realized to capture thorax wall vibration and extract cardiac mechanical
activities. Then for the core design, we propose a cross-domain diffusion model so as to transfer mechanical
domain activities into electrical domain ECG, which is realized through multiple iteration denoising inference.
However, the denoising diffusion model is negatively impacted by the randomness of generative process, resulting
in insufficient ECG signal fidelity. To solve this issue, we propose an ECG calibration guidance module, which
guides the ECG synthesis by the historical ECG from reference device, supporting faithful and high accuracy
contactless ECG for disease monitoring.

It is worth pointing out that, compared to previous works, AirECG focuses on contactless ECG for real disease
data, and builds a customized cross-domain diffusion model to perform multiple iteration ECG synthesis from
mmWave signal. We now proceed to introduce the design modules as follows.

• Cross-domain Diffusion. We propose a cross-domain diffusion model to transfer mmWave cardiac
activities into ECG signals. Based on multiple iterations denoising inference of our model, the ECG
synthesis is still robust even during irregular heartbeats. To achieve the domain transformation, the
diffusion model consists of the following components. (i) Multichannel patchify, which is a CNN encoder
to fuse multichannel mmWave data from various chest reflection points, and thus augment the mechanical
activities. (ii) For the fusion condition of cross-domain diffusion, we superpose multichannel mmWave
patches and Gaussian noise for the synthesis initialization at the first iteration. In the following steps, the
output ECG from last iteration will take place of Gaussian noise to iterate and revise itself. (iii) Hierarchical

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 3, Article 144. Publication date: September 2024.



144:8 • Zhao et al.

transformer is the core component to perform denoising operation, which takes the fusion condition as
input and updates the synthesis ECG.

• ECG Calibration Guidance. To control the randomness and guide the denoising synthesis process. We
utilize a historical ECG segment of the individual from reference device, which is introduced to constrain
denoising procedure in each iteration. In particular, the calibration ECG segment is firstly processed with
ECG embedding, which extracts the calibration features and fits them into tokens for transformer. In the
next step, a Cross-Attention based guidance is designed to integrate calibration ECG embedding with
the hierarchical transformer in Cross-domain diffusion, so as to guide the denoising process and achieve
faithful synthesis. In the practical usage, any historical ECG of the individual can be directly utilized for
calibration, which means AirECG has no requirement for model fine-tuning or frequent reference ECG
measurement.

4 System Design
In this section, we introduce the mmWave cardiac activities extraction of AirECG (Sec. 4.1), the cross-domain
diffusion model which transfers mechanical domain mmWave cardiac signal into ECG in electrical domain
(Sec. 4.2), and AirECG’s ECG calibration guidance module to guide domain transformation according to historical
ECG. (Sec. 4.3).

Fig. 5. The mmWave signal after cardiac activities extraction, compared with ground truth ECG

4.1 mmWave Cardiac Activities Extraction
For the first step of contactless ECG monitoring, we extract the mechanical cardiac activities using mmWave
radar. We firstly locate the thorax wall vibration through round trip length (RTL) profile search, which identifies
it by its highest vibration energy. After that, thorax wall vibration can be described as the phase signal 𝜙𝑡 in
Equation. 1, which is extracted from raw mmWave data after RTL profile search. However, 𝜙𝑡 describes the whole
chest vibration, which is a mixture of respiration, heartbeat and other motions artifacts. The chest displacement
of heartbeat is in 0.2-0.5mm, while that of respiration ranges from 4 to 12mm, which is significantly larger than
the displacement caused by cardiac activities [16]. To filter out irrelevant noise other than cardiac activities, the
acceleration filter is designed to eliminate slow and steady motion with low acceleration, like respiration, whereas
cardiac activities are rapid contraction of the myocardium, causing significant acceleration during heartbeats
[49]. The acceleration can be represented as the 2nd derivative of displacement, thus the acceleration filter is
defined as Equation. 2 to compute the 2nd derivative of 𝜙𝑡 .

𝑐 (𝑡) = (𝜙𝑡−3 + 𝜙𝑡+3) + 2(𝜙𝑡−2 + 𝜙𝑡+2) − (𝜙𝑡−1 + 𝜙𝑡+1) − 4𝜙𝑡
16ℎ2 , (2)

Fig. 5 shows the effectiveness of acceleration filter, where the blue line is the mmWave phase after acceleration
filter, the synchronous ground truth ECG is plotted in dashed yellow line. The cardiac cycle of mmWave and ECG
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is the same, illustrating an obvious R′ corresponds to R peak. Compared with simple band pass filter as Fig. 2(b)
plotted, the phase after acceleration filter exhibits distinct cardiac cycle, thus it is employed as the mechanical
domain input for our cross-domain diffusion.

4.2 Cross-domain Diffusion

Mechanical domain

Electric domain

Fig. 6. The multiple iteration inference by Cross-domain diffusion.

In this subsection, we introduce cross-domain diffusion, an ECG synthesis model for mmWave-based disease
monitoring. As illustrated in Fig. 6, our model takes mmWave cardiac signal and Gaussian noise as inputs,
synthesizing ECG through multiple iteration denoising inference. 𝑋𝑇 is the initial Gaussian noise, which is
performed with step-by-step denoising inference into 𝑋𝑡 , 𝑋𝑡−1, · · · , 𝑋0, where 𝑡 represents the index of denoising
step, 𝑇 is the number of total denoising steps, and 𝑋0 is the final ECG output. In each step of denoising inference,
the mmWave cardiac signal is introduced as the condition noted as 𝐶𝑚 . Based on such mechanical domain
condition, the Gaussian noise can be gradually transformed into ECG in electrical domain. In this way, the domain
transformation diffusion can be achieved.
For the cross-domain diffusion model, the core design is how to realize appropriate denoising step based on

conditional domain. To this end, we design a noise predictor as shown in Fig. 8, which takes mmWave condition
𝐶𝑚 , step index 𝑡 and current intermediate ECG 𝑋𝑡 to predict noise in the next step 𝜖𝜃 and obtain ECG in next
step 𝑋𝑡−1. In the following paragraphs, we will introduce how to perform forward noise diffusion and reverse
denoise process respectively, so as to train the noise predictor and realize denoising step. In addition, the network
architecture of noise predictor will be introduced in the section of Multichannel Patchify and Hierarchical
Transformer.

Forward noise diffusion process. The forward noise diffusion process is proposed to add noise into the
original ECG and disrupt the data distribution. In particular, Fig. 7 illustrates the steps of forward noise diffusion,
which generates Gaussian noise 𝑁𝑡−1 and adds it on the ECG of last step 𝑋𝑡−1, resulting in destroyed ECG 𝑋𝑡 .
Such noise diffusion step eliminates the original data distribution of ECG signal, and at the same time, generates
training sample 𝑋𝑡 for the noise predictor. Specifically, the destroyed ECG 𝑋𝑡 , mmWave condition 𝐶𝑚 and step
index 𝑡 are the inputs for the noise predictor.

We define the noise adding process as a markov process, i.e., 𝑋𝑡 is only based on 𝑋𝑡−1 for adding noise. During
the process, larger 𝑡 represents that 𝑋𝑡 is closer to pure Gaussian noise. To achieve this goal, we make larger
noise scale as the step increases,i.e., a scale parameter 𝛼𝑡 = 1 − 2 × 10−5𝑡 is defined to control the noise scale. In
this way, the noise adding process of ECG can be formulated as Equation. 3.

𝑋𝑡 =
√
𝛼𝑡𝑋𝑡−1 +

√
1 − 𝛼𝑡𝑧1

=
√
𝛼𝑡 (

√
𝛼𝑡−1𝑋𝑡−2 +

√
1 − 𝛼𝑡−1𝑧2) +

√
1 − 𝛼𝑡𝑧1

(3)
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+

+

Ground Truth
for Predictor Train

Fig. 7. The forward noise diffusion steps for predictor train.

It is noted that 𝑧1, 𝑧2 are sampled from unit Gaussian distribution, and their shapes are the same with 𝑋 , which
can be marked as 𝑧1, 𝑧2 ∼ N(0, I). According to the noise diffusion process in Equation. 3, 𝑋𝑡−1 is required for 𝑋𝑡 ,
and that implies we need to serially get the train data for noise predictor, i.e., for train data in step 𝑡 , we need to
compute 𝑋𝑡−1, 𝑋𝑡−2, · · · , 𝑋1 serially, which has high time complexity and is hard to train. Instead, we perform
further decomposition in Equation. 3, so as to achieve direct computation of 𝑋𝑡 from 𝑋0, as shown in Equation. 4:

𝑋𝑡 =
√
𝛼𝑡𝑋0 +

√
1 − 𝛼𝑡𝑧𝑡 , (4)

where 𝛼𝑡 =
∏𝑇
𝑖=1 𝛼𝑖 , 𝑧𝑡 ∼ N(0, I). Based on Equation. 4, the disrupted ECG at each step can be directly computed

from the pure ECG 𝑋0, so that we can randomly select a step 𝑡 , and get the disrupted ECG 𝑋𝑡 at that step for
noise predictor training. To sum up, The forward noise diffusion process adds noise to original ECG 𝑋0, so as to
get disrupted ECG 𝑋𝑡 , which can be represented as 𝑞(𝑋𝑡 |𝑋0) ∼ N (

√
𝛼𝑡𝑋0,

√
1 − 𝛼𝑡 I), where 𝑞 represents forward

noise diffusion process.
Reverse denoise process. The forward noise diffusion process 𝑞(𝑋𝑡 |𝑋0) can generate disrupted ECG 𝑋𝑡 for

noise predictor training, while the reverse denoise process is to perform noise prediction and denoising process,
so as to synthesize contactless ECG. The reverse denoise process is noted as 𝑝𝜃 (𝑋𝑡−1 |𝑋𝑡 ), where 𝜃 represents
neural network parameters that can be trained. The objective of denoising process is to make synthesized ECG
distribution 𝑝𝜃 (𝑋0) close to original ground truth ECG 𝑞(𝑋0), which can be achieved through minimizing their
Kullback-Leibler (KL) divergence as proved in prior works [23, 37]:

𝜃 = arg min
𝜃
𝐷𝐾𝐿 (𝑞(𝑋0) | |𝑝𝜃 (𝑋0))

= arg min
𝜃
𝐷𝐾𝐿 (𝑞(𝑋𝑡−1 |𝑋𝑡 , 𝑋0) | |𝑝𝜃 (𝑋𝑡−1 |𝑋𝑡 ,𝐶𝑚)),

(5)

where 𝑞(𝑋𝑡−1 |𝑋𝑡 , 𝑋0) represents the ground truth denoise process to get denoised ECG𝑋𝑡−1 based on intermediate
ECG 𝑋𝑡 and pure ECG 𝑋0, while 𝑝𝜃 (𝑋𝑡−1 |𝑋𝑡 ,𝐶𝑚) denotes the denoise process through the noise predictor based
on mechanical domain mmWave condition 𝐶𝑚 . In particular, the ground truth denoise process to get 𝑋𝑡−1 is a
Gaussian process, noted as 𝑞(𝑋𝑡−1 |𝑋𝑡 , 𝑋0) ∼ N (𝜇𝑡−1, 𝜎

2
𝑡 I), where 𝜎𝑡 =

(1−𝛼𝑡−1 ) (1−𝛼𝑡 )
1−𝛼𝑡 . However, such Gaussian

process of 𝑞(𝑋𝑡−1 |𝑋𝑡 , 𝑋0) can not be used for neural network training directly since it is not suitable for gradient
descent. Instead, our goal is to get the Gaussian mean 𝜇𝑡−1 from neural network output, noted as 𝜇𝜃 , which can
be utilized to sample denoised ECG 𝑋𝑡−1. The ground truth 𝜇𝑡−1 can be computed as:

𝜇𝑡−1 =

√
𝛼𝑡−1 (1 − 𝛼𝑡 )𝑋0 +

√
𝛼𝑡 (1 − 𝛼𝑡−1)𝑋𝑡

1 − 𝛼𝑡
, (6)

thus we can perform network training through minimizing the mean square error (MSE) between mean of ground
truth 𝜇𝑡−1 and predicted mean 𝜇𝜃 (𝑋𝑡 , 𝑡,𝐶𝑚), where 𝐶𝑚 is mmWave mechanical domain activities as a condition.
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-

Fig. 8. A denoising step: predict noise in ECG 𝑋𝑡 and synthesize 𝑋𝑡−1.

The training objective in Equation. 5 can be updated as:

𝜃 = arg min
𝜃

| |𝜇𝑡−1 − 𝜇𝜃 (𝑋𝑡 , 𝑡,𝐶𝑚) | |2, (7)

which is the core of noise predictor training. It should be noted that 𝜇𝜃 is not directly output by the noise predictor,
in particular, the predictor predicts noise 𝜖𝜃 (𝑋𝑡 , 𝑡,𝐶𝑚) in 𝑋𝑡 , and 𝜇𝜃 can be computed from 𝜖𝜃 as the following
Equation. 8 shows:

𝜇𝜃 (𝑋𝑡 , 𝑡,𝐶𝑚) = 𝜇𝜃 (𝑋𝑡 , 𝑡, 𝜖𝜃 ) =
1

√
𝛼𝑡

(𝑋𝑡 −
1 − 𝛼𝑡√
1 − 𝛼𝑡

𝜖𝜃 (𝑋𝑡 , 𝑡,𝐶𝑚)), (8)

therefore, to get 𝜇𝜃 , the noise predictor output 𝜖𝜃 is the only variable required for training. After the training of
noise predictor 𝜖𝜃 , we can achieve the reverse denoise inference based on Gaussian sampling:

𝑋𝑡−1 = 𝜇𝜃 (𝑋𝑡 , 𝑡, 𝜖𝜃 ) + 𝜎𝑡𝑧 (9)

where 𝑧 ∼ N(0, I), 𝜖𝜃 (𝑋𝑡 , 𝑡,𝐶𝑚) is the noise prediction output by the predictor. Besides, when 𝑡 = 1, set 𝜎𝑡 = 0
for the final 𝑋0 inference. To sum up, the reverse denoise process supports multiple iteration inference using a
noise predictor, which is trained through the optimization of Equation. 7, and the inference process is based on
Equation. 9.

Algorithm. 1 is the pseudo-code of cross-domain diffusion training process, where we take mechanical domain
mmWave and electrical domain ECG ground truth as input. During the training process, a step 𝑡 is randomly
selected as a sample, where forward noise diffusion process (Equation. 4) is executed to get disrupted ECG 𝑋𝑡 .
Then we perform reverse denoise process to optimize the noise predictor 𝜖𝜃 through minimizing the mean square
error in Equation. 7. For the multiple iteration inference of cross-domain diffusion in Algorithm. 2, mechanical
domain mmWave is input into the noise predictor to predict the noise 𝜖𝜃 in 𝑋𝑇 , · · · , 𝑋1 sequentially. In each
iteration, the 𝑋𝑡−1 can be synthesized through Gaussian sample in Equation. 9, thus the initially noisy data 𝑋𝑇
can be transformed into electrical domain ECG step-by-step.

Multichannel Patchify and fusion condition. The reverse denoising process requires a noise predictor 𝜖𝜃 ,
which can take the input not only from denoising status (step 𝑡 and intermediate ECG 𝑋𝑡 ), but also mmWave
cardiac activities as condition 𝐶𝑚 . To achieve the goal, two main challenges with the mmWave issues need to
be addressed, the first one is how to extract distinct features from the multichannel mmWave data, which can
provide precise cardiac information through multiple antennas on mmWave radar. The second challenge is how
to fuse intermediate ECG 𝑋𝑡 with mmWave condition 𝐶𝑚 , so as to be suitable for multiple iteration denoising
inference.
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Algorithm 1 Cross-domain Diffusion Training
Input: 𝐶𝑚 : mmWave condition;

𝑋0: ECG ground truth;
Output: Noise Predictor 𝜖𝜃
1: Set total diffusion steps 𝑇
2: Get Parameters 𝛼𝑡 and 𝛼𝑡
3: while 𝜖𝜃 not converged do
4: Randomly sample 𝑡 in [1,𝑇 ]
5: Sample 𝑧 ∼ N(0, I)
6: Get predictor input 𝑋𝑡 (𝑋0, 𝑡)
7: Get gound truth mean 𝜇𝑡−1 (𝑋𝑡 , 𝑋0)
8: Predict Noise 𝜖𝜃 (𝑋𝑡 , 𝑡,𝐶𝑚)
9: Get 𝜇𝜃 (𝑋𝑡 , 𝑡, 𝜖𝜃 )
10: Minimize | |𝜇𝑡−1 − 𝜇𝜃 (𝑋𝑡 , 𝑡, 𝜖𝜃 ) | |2
11: end while

Algorithm 2 Cross-domain Diffusion Inference
Input: 𝐶𝑚 : mmWave condition;

𝜖𝜃 : Noise Predictor;
Output: Synthesized ECG 𝑋0
1: Set total diffusion steps 𝑇
2: Get Parameters 𝛼𝑡 , 𝛼𝑡 and 𝜎𝑡
3: Sample 𝑧 ∼ N(0, I)
4: Gaussian initialization 𝑋𝑇 = 𝜎𝑡𝑧

5: for 𝑡 = 𝑇, · · · , 1 do
6: Predict Noise 𝜖𝜃 (𝑋𝑡 , 𝑡,𝐶𝑚)
7: Get 𝜇𝜃 (𝑋𝑡 , 𝑡, 𝜖𝜃 )
8: Sample 𝑧 ∼ N(0, I)
9: Sample 𝑋𝑡−1 = 𝜇𝜃 + 𝜎𝑡𝑧
10: end for
11: return 𝑋0

In terms of feature extraction in multichannel mmWave, a CNN-based multichannel patchify is proposed to split
mmWave data into patches, and each patch can be considered as a high-dimension token with cardiac features as
shown in Fig. 9. In particular, the original form of mmWave is multichannel sequential data, in the 1D-shape of
𝐿 ×𝐶 , where 𝐿 is the length of mmWave and 𝐶 is the number of channels. However, 1D-shape does not suit the
denoising process, since the denoising is directly performed on the whole segment, but not sequentially over time.
Hence we adjust the mmWave into 2D-shape of 𝐼 × 𝐼 ×𝐶 , where 𝐼 =

√
𝐿. In addition, to extract cardiac features

from multichannel data, we introduce a CNN framework, which computes the convolutions of each channel
and performs summation on all channels. Such a framework can achieve the channel fusion function similar to
beamforming in [20], so as to boost cardiac information through multiple channels, since more channels can
provide higher resolution for mmWave radar. To extract distinct multichannel features, we custom-designed the
convolution layer as it can split mmWave patches in the shape of 𝑝 × 𝑝 and transfer them into mmWave tokens
for the hierarchical transformer in the next part. Specifically, the kernel size and stride step of convolution are the
same as patch size 𝑝 = 2, and the number of feature maps is set to 𝑑 = 384. Thus the multichannel mmWave data
can be patchified into 𝑇 tokens with 𝑑 dimensions, where 𝑇 = (𝐼/𝑝)2. Those tokens are processed with standard
2D positional encoding to fit transformer framework [18], and the tokens are noted as mmWave condition 𝐶𝑚 ,
which can be fused with intermediate ECG 𝑋𝑡 .

The condition information controls the multiple iteration denoising of diffusion model, which can be class
labels (e.g.,dog or cat) [31] and prompt text [34] in prior image synthesis works. However, different from the
condition information in prior works, the mmWave condition is strongly correlated with synthesized ECG in time
domain since they are synchronous. To maintain such relationship during denoising process, we design a fusion
condition which adds the tokens of mmWave and intermediate ECG together. Furthermore, mmWave condition
and the intermediate ECG also share the same 2D positional encoding to maintain synchronization in time
domain. In this way, the mmWave mechanical domain cardiac activities can be deeply fused with intermediate
ECG, thus the domain transformation can be achieved during each iteration of ECG denoising process.
Hierarchical Transformer. Our cross-domain diffusion is a hybrid architecture neural network, where

the fusion condition is convolution-based, and the backbone is transformer-based. As shown in Fig. 10, the
transformer backbone is hierarchical, and we define 6 hierarchical transformer blocks in our implementation,
which are scalable on demand. The backbone takes fusion condition and time step 𝑡 as inputs, and estimates the
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Multichannel 
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Fig. 9. Multichannel patchify: convolution fusion of multichannel mmWave data into tokens.

noise level 𝜖𝜃 in intermediate ECG 𝑋𝑡 . In the following paragraphs, we will introduce the modules in transformer
backbone from bottom to the top.

• Time step Embedding is to transform time step 𝑡 into vectors, which are in the same dimension of transformer
backbone (𝑑 = 384). Since earlier denoising steps only require dealing with some rough features, while
detailed denoising is needed in latter steps. Thus it is necessary to combine time step information into the
noise predictor. A sinusoidal timestep embedding is implemented with 2 linear layers and SiLU activation.

• Adaptive Layer Normalization (adaLN) is a design to incorporate the time step deeply into neural network.
Prior works have proved the effectiveness of adaLN in image synthesis [17, 31], thus we design adaLN
modules after each layer normalization operation to deeply augment time step embedding. In the transformer
block, an adaptive scale operation is also performed after Self-Attention and Feedforward.

• Multi-Head Self-Attention is the core module to transfer mechanical domain cardiac activities into electrical
domain. It can capture auto correlation information such as atrial and ventricular activities and extract
high-level representations implicit both in mmWave and intermediate ECG. The hybrid architecture of
self attention and convolution in multichannel patchify can improve the training efficiency, since their
advantages of local feature extraction and global receptive field can be cooperated.

4.3 ECG Calibration Guidance
The cross-domain diffusion is a type of generative model, which shows randomness nature due to Gaussian
initialization and denoising. To avoid the negative impacts of randomness on synthesized ECG fidelity, the ECG
calibration guidance is introduced to guide and control the generative process, so as to support faithful and high
accuracy contactless ECG.

According to the multiple iteration denoising inference mentioned above, the randomness is unavoidable due
to the generative ECG synthesis. Despite the fact that mmWave condition 𝐶𝑚 has controlled the randomness
to some extent, further guidance is still worthy of user’s personalized information, especially for new users
who are not involved in the train datasets. A simple idea is to fine-tune a personal model with new user’s data,
while it requires synchronized ground truth data and large computing resources, thus it is not applicable in
practical scenarios. To achieve personal guidance without the requirement of synchronous data and fine-tuning,
we design ECG calibration guidance as a plug-in to calibrate synthesized output. Such calibration can be achieved
through historical ECG ground truth from specific user. We design a Multi-Head Cross-Attention based guidance
to calibrate the cross-domain diffusion model. The Cross-Attention can learn the potential correlation between
synthesized ECG and historical ECG, thus controlling the denoising step to fit the personal features in calibration
ECG.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 3, Article 144. Publication date: September 2024.



144:14 • Zhao et al.

+

ECG 
Embedding

Multichannel
Patchify

Timestep 
Embedding

Hierarchical Transformer Blocks

Layer Norm

Linear

adaLN Modulate

Shift, 
Scale

Fusion Condition
Multi-Head

Self-Attention

Layer Norm

Fusion ConditionTimestep
Embedding

adaLN Modulate

Layer Norm

Feedforward

+

Shift, Scale

Scale

Shift, Scale

Scale

+

Multi-Head
Cross-Attention

Guidance
Embedding

+

Only for Calibration 
Guidance

x 6

Fig. 10. The noise predictor architecture of Cross-domain Diffusion.

The work flow of ECG calibration guidance is illustrated as the dashed line in Figure. 10. In particular, the
calibration ECG for guidance is noted as𝐺𝑐 , which is firstly fed into Guidance embedding, so as to achieve ECG
features extraction and map them into the dimension 𝑑 of transformer backbone. Then the latent features of
synthesized ECG are introduced from the self-attention layer, which is further mapped into query vector 𝑄𝑋 in
our Cross-Attention. At the same time, the guidance embedding is mapped into key 𝐾𝐺 and value 𝑉𝐺 vectors of
Cross-Attention. The trainable attention score can be computed as follows:

CrossAttention(𝑄𝑋 , 𝐾𝐺 ,𝑉𝐺 ) = softmax(
𝑄𝑋𝐾

𝑇
𝐺√
𝑑

)𝑉𝐺 , (10)

where the calibration ECG 𝐺𝑐 can be fused with synthesized ECG 𝑋 for the following procedure, achieving the
calibration guidance. It should be noted that the calibration guidance can be omitted if there is no historical ECG
for guidance, however, the synthesized ECG fidelity may decline on unseen participants as described in Sec.6.5.

5 Experiment Setup
Hardware and software toolkits. Fig. 11(a) shows the mmWave radar and ground truth ECG patch in our
experiment, and it should be noted that mmWave radar is packaged into a 3D printed shell. The IWR1443BOOST
mmWave radar [8] and DCA1000EVM [7] from Texas Instrument are deployed as the mmWave front end to
capture mechanical domain cardiac activities. The IWR1443 radar is equipped with 2 Tx and 4 Rx to collect
multichannel mmWave data, which form 8 virtual channels in total. The radar emits 250 frames per second, with
each frame containing 2 chirps from each Tx. Each chirp is a continuous wave that lasts 65ms and consists of
512 sample points. The mmWave data is transmitted from the DCA1000EVM to our laptop through Ethernet,
where we develop a packet sniffing program to collect data in real-time. For ground truth ECG data collection, the
CarePulse [4] ECG patch is employed with a sample rate of 125Hz, which shares a timestamp with the mmWave
radar via network time protocol (NTP). The ECG ground truth is analyzed by professional ECG labeling software
(ECG Pro from CarePulse [1]), the software marks the category of heart beat (normal, AF, etc.) and is checked by
expert technicians manually. The raw data of mmWave and ground truth ECG are transmitted to a data server for
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(a) mmWave radar and grouth truth ECG (b) Data collection setting

Fig. 11. Devices and data collection setting of experiment.

further signal processing using Python and libraries of NumPy, SciPy. Our deep learning model is implemented
with Pytorch, which is deployed on a server with 2 NVIDIA RTX3080 GPUs and Intel Xeon E5-2696v3 CPU.

Participant enrollment and disease diagnosis. For the participant enrollment, this research is approved by
the institutional review board (IRB) of Peking University Third Hospital (PUTH). 32 participants (21 males, 11
females, 47.6 years old on average) are enrolled from May to December 2023. Among all participants, 16 were
inpatients from cardiology ward, while the remaining 16 participants were enrolled as healthy control group. The
participants of cardiac disease group may be diagnosed with one or more diseases such as AF, heart failure, etc.
In terms of AF patients, both persistent and paroxysmal AF patients were recruited in our experiment to increase
the diversity. It should be noted that all the participants have been informed of the experiment content and
provided informed consent in advance, which is an agreement to share the data for research. The experiments
were performed in the office room and cardiology ward of the hospital. The ground truth ECG data from patch
devices were annotated by three expert technicians to mark heartbeats into rhythm labels, including normal sinus
rhythm (NSR), atrial fibrillation (AF), and other 5 common arrhythmia types: premature ventricular contraction
(PVC), atrioventricular block (AVB), premature atrial contraction (PAC), tachycardia and bradycardia. In total,
109,598 heartbeats are captured by mmWave and included in our datasets.

Data collection setting. The data collection setting of our experiment is exhibited as Fig. 11(b), where a
participant is lying under the mmWave radar and the distance is about 20∼60cm away from antennas. The
participant also wears an ECG patch under his/her clothes, which collects II-lead ECG as ground truth. The data
collection process lasts 1 continuous hour for each participant. In total, the duration of synchronous mmWave and
ECG is 32 hours, and we split data into 5s length segments for training and evaluation. Specifically, we resample
the original sample points (mmWave: 1250, ECG: 625 points) into 1024 (32×32) points to fit the multichannel
patchify of cross-domain diffusion. In addition, to augment training datasets, we shift segments by 1 second for
data augmentation, which can improve model performance and avoid over-fitting.

6 System-level Evaluation
In this section, we first evaluate the performance of AirECG compared with state-of-the-art contactless ECG
monitoring methods on normal participants and participants with diseases, separately. Furthermore, we validate
the effectiveness of our system on user-independent datasets,i.e. new participants apart from train datasets.
Then we show AirECG’s performance under 3 types of cardiac disease monitoring,i.e., AF, PVC, and AVB,
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respectively. Additionally, to demonstrate the ability of contactless ECG for downstream applications, we perform
arrhythmia detection as a further experiment. In the end, we perform micro-benchmark experiments to validate
the effectiveness of AirECG’s modules and parameter configurations individually.

6.1 Overall performance

(a) Pearson correlation coefficient (PCC) (b) CDF of root mean square error (RMSE)

Fig. 12. Signal fidelity between synthesized ECG and ground truth.

Evaluation metrics. To train and evaluate AirECG, we perform the 5-fold cross-validation based on user-
dependent and user-independent (in the following Sec. 6.2) principle respectively. For user-dependent datasets,
we randomly split the overall datasets into 5 folds, with each fold containing 20% of the data. To evaluate our
model performance, we train AirECG 5 times in total, and one fold is selected as the test datasets each time, while
the other folds are utilized to train the model (70% train, 10% validation). The test dataset’s results for each fold
are summarized as the final evaluation performance. In particular, we utilize the following 5 metrics to evaluate
the quality of synthesized ECG signal.

• Pearson correlation coefficient (PCC), which is a statistical measure of the amplitude and trend similarity
between the synthesized ECG and ground truth. The value of PCC ranges from -1 to 1, and higher value
implies synthesized ECG has higher correlation with ground truth. The relationship is considered to be
strong correlation when PCC is larger than 0.8.

• Root mean square error (RMSE), which stands for the amplitude error between synthesized ECG and ground
truth. We calculate root of mean square error among all sample points of normalized ECG, so as to represent
the amplitude error of the entire segment.

• Qualified monitoring rate. To evaluate the cardiac events in ECG, we employ Neurokit2 [27] to identify
ECG and corresponding feature points, which is an open source software for ECG signal processing. While
low quality ECG may not be successfully identified due to the limitation of synthesis model and ambient
noise, thus we utilize the identified rate as a metric for synthesis quality.

• R-R interval error , which is the interval error between synthesized ECG and ground truth. As the primary
cardiac event corresponding to heart systole, the R-R interval is related to heart rate variability and heart
disease like AF. Once the R peaks in ECG are identified by Neurokit2, R-R intervals can be computed in
milliseconds.

• T-wave timing error , which is the timing error between T-waves in the synthesized ECG and ground truth.
T-wave represents the potential changes of ventricular repolarization and is related to ventricular diastole.
Similar to R-R interval, T-wave can be identified for timing error computation in milliseconds.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 3, Article 144. Publication date: September 2024.



AirECG: Contactless Electrocardiogram for Cardiac Disease Monitoring • 144:17

(a) CDF of R-R interval error (b) CDF of T-wave error (c) Heart rate error

Fig. 13. Timing error of cardiac events. (a) is the Cumulative Distribution Function (CDF) plot of R-R interval error, (b) is the
CDF plot of T-wave timing error. Some heartbeats fail to be identified in baselines, but they are valid in AirECG, thus we set
them to an error of 1s for baselines. (c) is the heart rate error among all valid segments of three algorithms.

Comparison baselines. We implement two state-of-the-art contactless ECG baselines for performance
comparison, the first baseline is RF-ECG [42], which utilizes a conditional GAN based model to synthesize ECG
from wireless signal. The cGAN of RF-ECG takes wireless signal as condition and generates ECG based on a
convolution encoder-decoder framework, noting that the cGAN model outputs generated ECG through one
step inference. The second baseline is a contactless ECG monitoring method with mmWave radar [11], known
as CTL-ECG. Such method is based on a sequence to sequence (Seq2Seq) architecture, which extracts cardiac
features using a temporal-spatial decoder, while synthesizing ECG from cardiac features using auto-regressive
CNN. The auto-regressive principle implies that the model outputs one sample point per inference, that is, for
1024 sample points in 5s segment, 1024 iteration inference is required. These points are generated sequentially,
meaning that points in the front can not be revised after inference. In contrast to previous approaches, AirECG
performs multiple iteration denoising inference, which can synthesize ECG step-by-step, thus the correlation
between sample points can be included in revising the output ECG. In this way, AirECG can achieve accurate
ECG monitoring even during abnormal heartbeats.
Accuracy of ECG morphology. To evaluate ECG morphology in signal amplitude and trend, the PCC

and RMSE are employed as metrics. Referring to Fig. 12(a), we can observe that, (i) for the overall datasets,
AirECG can achieve the highest PCC at 0.925 with 7.9%∼13.4% improvement, which implies the effectiveness of
cross-domain diffusion from mechanical domain mmWave to electrical domain ECG. Besides, CTL-ECG (0.846)
shows better performance than RF-ECG (0.816), demonstrating the advantage of sequentially generation than
one step inference. (ii) We separately evaluate the PCC of health participants (Normal) and participants with
cardiac diseases (Disease). It can be found that for health participants, the synthesized signals have a strong
correlation (PCC higher than 0.8) with ground truth, when using any of three methods: AirECG (0.95), RF-ECG
(0.864) or CTL-ECG (0.890). Such performance owes to the regular heartbeats of healthy participants, which are
uncomplicated to perform domain transformation. (iii) However, RF-ECG and CTL-ECG fall short during disease
monitoring, showing PCC of 0.710 and 0.748 respectively. The performance decline of baselines is caused by the
model limitation for abnormal ECG synthesis, which demonstrates irregular rhythm and morphology. AirECG
overcomes this problem with the help of multiple iteration denoising inference, showing a strong correlation
PCC of 0.860 (15.0%∼21.1% improvement).

For the RMSE evaluation between synthesized ECG and ground truth, Fig. 12(b) plots the cumulative distribution
function (CDF) of AirECG and baselines. We can find that AirECG outperforms others in all error ranges. In
particular, 73.67% of BreathAnalyzer’s measurements are within a normalized RMSE of 0.1, compared with that of
23.76% and 37.55% for RF-ECG and CTL-ECG, respectively. The smaller of RMSE implies better performance on
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Table 1. Performance on user-independent datasets.

Model PCC(N) PCC(D) RMSE(N) RMSE(D)
RF-ECG 0.755 0.654 0.223 0.374
CTL-ECG 0.754 0.643 0.224 0.378
Ours 0.853 0.819 0.182 0.290

Table 2. PCC under various diseases.

Model PVC AVB AF
RF-ECG 0.908 0.809 0.675
CTL-ECG 0.898 0.770 0.620
Ours 0.959 0.911 0.802

the amplitude of synthesized ECG, which helps to monitor diseases such as myocardial hypertrophy or myocardial
necrosis.

Accuracy of cardiac events. The accuracy of cardiac events (R-R interval, T-wave) is of significant importance
for disease monitoring, as indicators. However, contactless ECG may synthesize unqualified ECG signals, lacking
QRS-complex or T-wave, due to user’s body movement and ambient noise, therefore, the qualified monitoring
rate is employed to evaluate the quality of ECG wave. The open source ECG processing tool Neurokit2 is used to
identify the QRS-complex and T-wave in ECG, while we find that the qualified monitoring rates for RF-ECG,
CTL-ECG and AirECG are 67.69%, 72.81% and 86.95% respectively. We summarize the reasons as following, (i) As
previously mentioned, the abnormal heartbeats bring challenge for ECG synthesis, causing more unqualified
ECG. While AirECG shows better performance in qualified monitoring rate, this exhibits the effectiveness of ECG
synthesis through multiple iteration denoise. (ii) The body movements and ambient noise are more serious and
unavoidable in our datasets, since data collection is in shared wards of multiple patients (personal activities cause
unavoidable ambient noise), and patients may have more body movement compared with normal subjects due to
physical discomfort. (iii) Neurokit2 has limited ability to process ECG with noise, which reduces the qualified
monitoring rate level.

Furthermore, we evaluate the timing accuracy of contactless ECG, as the ECG wave is successfully identified.
Fig. 13(a) is a CDF plot of R-R interval error of RF-ECG, CTF-ECG and AirECG. Due to the fact that partial R
peaks can be identified by AirECG while not validated in RF-ECG and CTF-ECG, we set the timing error of them
into 1s (corresponding to typical 60 beats/min heart rate). In this way, the average errors of them are 228.3ms,
171.5ms and 10.3ms respectively. Our method outperforms others in all error ranges of the CDF plot in Fig. 13(a).
We consider that the limitations of prior works are mainly caused by low quality ECG during disease monitoring.
Especially for the main disease in our datasets: atrial fibrillation (AF), the heartbeats are completely irregular,
resulting in high errors in prior ECG synthesis.

Fig. 13(b) plots the CDF of T-wave timing error, where the false identified T-wave in RF-ECG and CTF-ECG is
also set to 1s. The mean errors of RF-ECG, CTF-ECG and AirECG are 251.3ms, 192.6ms and 24.5ms respectively.
Compared with R-R interval, the errors of T-wave increase for all three algorithms, since the cardiac activities of
T-wave (ventricular repolarization) are weaker than that of R peak (ventricular depolarization). Therefore, it is
harder to synthesize T-wave, introducing higher error.
In the next step, we employ the effective heartbeats identified by Neurokit2 from RF-ECG, CTF-ECG and

AirECG respectively, so as to estimate the heart rate error of the effective heartbeats. Among the heartbeats of
CTL-ECG, the average heart rate error is 2.49 beats/min, while that of RF-ECG is 2.48 beats/min. It implies that
for the effective segments, the performance between those two systems is similar. It is noted that CTL-ECG has
more effective segments (72.81%) than RF-ECG (67.69%) as we mentioned before. The average heart rate error of
AirECG is 1.16 beats/min, which shows significant improvement with the help of cross-domain diffusion model.

6.2 User-independent performance
To evaluate the generalization of AirECG, we implement a user-independent 5-fold cross-validation experiment,
i.e., the test participants (6 subjects in each fold including normal and diseased condition) have not been included
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in the model training datasets (the other 26 subjects). Table 1 shows the PCC and RMSE on the test datasets,
which are separated into normal subjects (N) and subjects with disease (D). We can observe that,

(i) For our algorithm the average PCC of normal subjects (0.853) and subjects with disease (0.819) both show
strong correlations with ground truth ECG, while the PCCs of baselines decline to lower than 0.8. The advantage of
AirECG comes from the calibration guidance module, which incorporates the reference ECG from each participant
into the ECG synthesis. Although the network parameters are not fine-tuned by the personal data from test
participants, the calibration guidance module can extract ECG morphology information from reference ECG
and guide the denoising synthesis process. Thus contactless ECG can be accurate and avoid the impact from
randomness of generative model. (ii) For the RF-ECG and CTL-ECG baselines, the user-independent performance
declines compared with evaluation in previous works. One possible reason is the limitation of our ground truth
ECG device, since the ECG patch provides a non-standard lead. Compared with standard lead in prior works,
ECG patch may cause more ECG morphology variation among different subjects, thus impacting the result of
user-independent evaluation.

6.3 Performance among Typical Types of Arrhythmia
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Fig. 14. Examples of AirECG during different diseases. (a) Atrial fibrillation (AF): P-wave disappears with irregular QRS-
complex. (b) Atrioventricular block (AVB): PR interval extends as the 2-3s in figure, showing limited atrioventricular conduction.
(c) Premature ventricular beats (PVC): irregular beats and abnormal QRS-complex at 1 or 3 s

We have validated AirECG’s performance on ECG morphology and events in previous experiments. In this
subsection, we discuss the performance on specific diseases, i.e., PVC, AVB and AF. We evaluate the PCC
of synthesized ECG under various diseases, which is listed in Table 2. It can be summarized that, (i) AirECG
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Fig. 15. Arrhythmia detection performance compared with ECG patch and mmWave generated ECG.

outperforms baselines on all diseases in our datasets, which implies that cross-domain diffusion helps synthesizing
of abnormal heartbeats, through multiple iteration denoising inference. (ii) The performance under PVC or AVB
is better than that of AF, and we consider such phenomenon is caused by the characteristics disease. In particular,
AF shows continuously irregular heartbeats with abnormal ECG feature points (even feature point disappear),
while PVC and AVB still shows integral ECG feature points with partial irregular heartbeats. (iii) We consider the
main issue limits the performance of RF-ECG and CTL-ECG in the overall test datasets is the ECG fidelity decline
during AF, since their PCC drops to 0.675 and 0.620 during AF occurs. While AF accounts for a large portion of
our disease datasets.
Fig. 14 shows the contactless ECG and corresponding ground truth under three diseases respectively. The

synthesized ECG signals present the same periodicity, amplitude and trend compared with the ground truth
under AF, AVB and PVC. Slight misalignment randomly happens during ECG monitoring, which will not impact
the diagnosis for diseases. For diseases diagnosis with specific ECG feature points, (i) In terms of AF, we observe
the disappearance of the P-wave along with continuously irregular QRS-complex. (ii) The ECG of AVB shows
an PR interval extension at the 2-3s of the segment, implying limited atrioventricular conduction. (iii) PVC
shows irregular beats and abnormal QRS-complex at 1 and 3 s. It can be summarized that AirECG enables disease
monitoring and has the ability to present the features of specific diseases.

6.4 Arrhythmia Detection using Contactless ECG
The AirECG’s performance under different diseases has been validated in the previous subsection. Furthermore,
we discuss the performance of ECG downstream tasks, i.e., arrhythmia detection. We use the existing state-of-
the-art ECG arrhythmia detection algorithm [22] to evaluate the ability of contactless ECG. In particular, the
ECG data from patch device and artificial annotation are utilized for detector training. The arrhythmia detector
in [22] has been shown to achieve cardiologist-level arrhythmia detection. For the evaluation, we first feed the
test mmWave data into ECG synthesis model and get the synthesized ECG, then the ECG is fed into arrhythmia
detector for the final evaluation. We also feed the ground truth ECG into the detector to assess the performance
of gold standard device. For arrhythmia detection, the F1-score is a common metric used to evaluate model
performance, which helps avoid the negative impact of unbalanced data distribution.

Fig. 15(a) plots the F1-score of arrhythmia detection on RF-ECG, CTL-ECG, AirECG and the ground truth ECG.
We can observe that, (i) The ground truth ECG can achieve a detection F1-score of 0.987, demonstrating the
gold standard of arrhythmia detection. While AirECG can achieve a similar performance of 0.9714, showing the
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(a) PCC of phase copmared with multichannel patchify (b) PCC of various steps denoising

Fig. 16. Experiment for multichannel patchify and various denoising steps.

effectiveness of contactless disease monitoring. (ii) We find that AirECG shows great improvement compared
with other contactless ECG baselines. We consider the great improvement is mainly because the performance
of these baseline suffers greatly when facing disease patients, which leads to the misjudgment of arrhythmia
detector. Fig. 15(b) shows the normalized confusion matrix of AirECG. The results show that, AirECG achieves
98.8% accuracy, 98.88% specificity and 98.58% recall, showing the reliability for arrhythmia detection.

To evaluate the generalization of arrhythmia detection, we conduct a user-independent validation on AirECG
and ground truth ECG. Which means that the participants in test datasets are isolated from training datasets.
Fig. 15(b) illustrates the F1-score of AirECG (0.8350) and ground truth ECG (0.9020) under user-independent
validation conditions. The performance still maintains reasonable level for disease screening, and we consider
the performance decline is caused by insufficient ECG training data and weak generalization of arrhythmia
detector in [22]. To this end, we employ open source ECG data in [19, 29] for arrhythmia detector training, and
the F1-score of AirECG and ground truth ECG increases to 0.8911 and 0.9484 respectively. We believe that the
generalization of arrhythmia detection can benefit from larger quantities of training data.

6.5 Micro-benchmark Evaluation
Effectiveness of multichannel patchify. To validate the effectiveness of multichannel patchify and hybrid
CNN-Transformer framework in AirECG, we introduce the baseline that replaces multichannel patchify with
a single-channel MLP projection layer, similar to the setting in vision transformer [18]. The baseline is named
Simple Patch, and Fig. 16(a) shows the performance between AirECG and simple patch. Overall, it can be observed
that the PCC declines from 0.925 to 0.860, with the PCC of normal participants decreasing from 0.955 to 0.900.
Especially for disease patients, the PCC declines from 0.860 to 0.773. We can summarize that, multichannel
mmWave is essential to improve the accuracy of ECG monitoring, in particular patients with abnormal heartbeat.
Multichannel data has an enhancing effect on the heartbeats that are hard for ECG measurement. Besides, the
hybrid CNN-Transformer framework performs better than pure transformer, since the CNN can be used for
multichannel feature extraction at front layers, and the convolution operation is more suitable for temporal
mmWave data.
Impact of denoising steps. In previous experiments, it has been demonstrated that cross-domain diffusion

benefits ECG synthesis from mmWave signals, particularly through multi iteration denoising inference. To
evaluate how the step count of denoising impacts synthesized ECG quality, we alter the denoising steps from 2 to
100 and observe the variation of ECG accuracy (PCC with ground truth). It is noted that during training, the
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Table 3. User-independent Performance w/wo calibration guidance (CG).

Experiment PCC(N) PCC(D) RMSE(N) RMSE(D)
with CG 0.853 0.819 0.182 0.290

without CG 0.794 0.741 0.211 0.329

denoising is configured at fixed 1000 steps, while during evaluation, the count of denoising steps can be altered
in the range of 2 to 1000 by interpolation. The PCC variation against denoising step is plotted in Fig. 16(b), where
the PCC shows higher improvement as more denoising steps are performed. For disease monitoring, the PCC
increases from 0.656 to 0.835 in the preceding 25 steps, while the following increment until 100 steps (0.860) is
smaller. However, the computing resources required for inference increase linearly with steps added, thus an
appropriate number of denoising steps can be selected based on hardware computing resources. In the setting of
AirECG, 100 steps are set as default.
Impact of calibration guidance. The calibration guidance is the module to control the randomness of

diffusion generative model, thus AirECG outputs ECG with higher accuracy. To evaluate how the calibration
guidance impacts ECG synthesis, we perform an ablation study on the user-independent datasets. Since for
user-dependent datasets, the personal ECG features in the test set have been learned during training process
(same subject in both train and test). While for the user-independent experiment, the calibration guidance can
provide the guidance for the unseen subject in the test set. Table 3 shows the comparison of AirECG’s performance
with/without calibration guidance. It can be summarized that, (i) The calibration guidance can improve the
accuracy of both in trend (PCC) and amplitude (RMSE), showing the effectiveness to control the ECG synthesis
process with reference ECG. (ii) Despite the lack of calibration guidance, AirECG still outperforms the baselines
in Table 1. In particular, the PCC of normal subjects improves from 0.754, 0.755 to 0.794, and PCC of disease
subjects improves from 0.643, 0.654 to 0.741. Such improvement implies that the cross-domain diffusion provides
better ECG monitoring despite no reference ECG for calibration.

7 Discussion and Future Work

7.1 AirECG on Unseen Data
The ECG synthesis performance on unseen data is a critical issue for the generalization of AirECG, since it is a
machine learning based system. Despite the mmWave data in the test set having never appeared in the training
set during all the experiment settings, we can still divide the unseen data issue into three gradually harder levels.
(i) The target disease and user both have been learned from the training set, that is the user-dependent experiment
in Sec. 6.1. (ii) The target user is not included in the training data, but the target disease has been learned by
AirECG using data from previous patients. Such setting has been evaluated as the user-independent experiment
in Sec. 6.2. (iii) For the further extreme situations, both target disease and user are not included in the training
set and thus are unknown for the model. AirECG’s performance under (i) and (ii) conditions has been validated
in the previous section, and we will further discuss the unknown diseases issue in the following paragraphs.
In practical scenarios, AirECG can be trained on complete disease datasets, thus it can better serve the

ECG monitoring tasks of various diseases. In this section, we aim to investigate AirECG’s performance on
unknown diseases. To simulate such a condition, we delete specific diseases from the training datasets, such as
atrial fibrillation (AF) and premature ventricular contraction (PVC). Then AF and PVC data are employed for
performance evaluation as model’s unknown diseases.
Fig. 17 illustrates AirECG’s PCC performance on AF and PVC when the model has seen (Seen) or has not

seen (Unseen) the disease during the training process. As we mentioned in Sec. 6.1, PCC of the general training
process (Seen) on both diseases shows strong correlation at 0.802 of AF, 0.959 of PVC. However, for the model
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Fig. 17. PCC of a specific disease when it is
not included in the training datasets.

Fig. 18. Performance of conventional cGAN
with various Gaussian Augmentation.

unseen specific diseases, the PCC of AF drops to 0.661 and that of PVC drops to 0.818. We can summarize that, (i)
For unknown diseases, the consistency between AirECG and ECG Patch declines due to the ambiguous mapping
between mechanical and electrical activities. (ii) The unseen model performance varies among diseases. For
arrhythmia that still has a certain regularity (like PVC), AirECG can still maintain a strong correlation with
ground truth. But for absolute irregularity of the heart rhythm (like AF), the PCC is unsatisfactory. In conclusion,
it is necessary to train AirECG on multiple types of diseases, so as to improve the accuracy and generalization
ability.

7.2 How Diffusion Beats Conventional Model
Whether in our ECG synthesis tasks or in popular image generation tasks, diffusion models show better perfor-
mance than prior generative models. In this section, we discuss how the denoising diffusion beats conventional
models in terms of contactless ECG synthesis. The idea of adding noise and denoising appears to be similar with
data augmentation through more samples, while the latter is a common approach to improve the performance of
machine learning models. To prove the differences between diffusion and noise augmentation, we employ the
conditional GAN (cGAN) in prior RF-ECG [42], and add Gaussian noise into the mmWave data during model
training so as to achieve augmentation.

Fig 18 plots the performance variation with different scales of Gaussian noise added to mmWave for augmenta-
tion. We set the mean of Gaussian noise to zero, and the standard deviation(STD) ranges from 0.025 to 0.7, since
the input data is normalized in [-1,1]. The red dashed line indicates the original performance of cGAN, showing
PCC with ground truth at 0.816, and the yellow dashed line shows diffusion performance (AirECG) at 0.925 on
the overall test datasets. With the Gaussian noise augmentation at various scales, the PCC of cGAN rises to 0.829
when STD=0.1 and declines to 0.801 when STD=0.7. It can be summarized that (i) Diffusion model shows better
performance than conventional GAN model even if the GAN is equipped with noise augmentation. (ii) Different
from randomly adding noise for augmentation, diffusion is a probabilistic model to perform denoising synthesis
step-by-step, which means that the Gaussian sampling steps are in serial and directional, rather than isolated
steps for data augmentation. (iii) Another weakness of GAN is the problem of mode collapse [17], which means
that the balance between generator and discriminator is hard to maintain, and leads to unsatisfactory model
generalization. However, diffusion model performs stable synthesis through multiple iteration inference in serial,
avoiding the use of a discriminator and thus preventing the problem of mode collapse.
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7.3 Future Work
Multi-lead ECG monitoring. AirECG achieves contactless single-lead ECG for disease monitoring, so as to
enable arrhythmia detection and management. AirECG’s single-lead ECG signal is adequate for heart rhythm
disease monitoring (AF, tachycardia and etc.), while for ischemic heart disease such as myocardial ischemia,
multi-lead ECG is still required for further inspection. The cooperation and comparison between multi-lead
ECG signals can boost the ability to detect myocardial ischemia and find out ischemic location. A 12-lead ECG
device can monitor chest (precordial) lead, which can locate ventricular issues in horizontal plane. AirECG has
the potential for multi-lead ECG monitoring since the mmWave radar captures vibration of the overall chest,
which covers the positions of multi-lead electrodes. However, the ground truth ECG device in our experiment
is a single-lead ECG patch [4], which limits multi-lead ECG synthesis. In the future work, we will try to take
advantage of multi-lead ECG devices, especially 12-lead ECG devices in order to obtain the ground truth for
cross-domain diffusion training and evaluation.

Disease severity evaluation and management. In our experiment, the AirECG has been implemented for
ECG monitoring in clinical or laboratory setting lasting several hours. For the subsequent research, we plan to
extend AirECG into longer-term scenarios such as daily monitoring in the bedroom, office and hospital ward. With
the help of longer-term daily monitoring, further disease severity evaluation and management application can be
investigated. For instance, precise planning of medication usage for paroxysmal AF can be achieved through daily
ECG monitoring [28], which benefits in controlling the side effects of medication. Similar application has been
validated with contactless breath monitoring. [44] has employed mmWave radar to perform long-term breath
monitoring on Parkinson’s disease and provided patients with a better medication plan. Additionally, we will
improve the noise cancelling ability of AirECG to deal with motion artifacts during daily monitoring.

8 Related Work
Our work focuses on cardiac sensing topics, and we separate related works into two classes: wearable cardiac
sensing and the emerging contactless cardiac sensing.

Wearable cardiac sensing. (i) Photoplethysmogram (PPG) is a wearable device-friendly technique for heart
monitoring, which monitors blood volume changes at fingertip or on the wrist. [48] propose a tree boosting
model to analyze heart rate variability (HRV) from PPG data, while [36, 46] utilize light weight CNN with PPG
data from smartwatch to extract HRV features for atrial fibrillation (AF) screening. However, PPG can not provide
the atrial and ventricular activities in the electrical domain, which limits the cardiac monitoring accuracy and
further medical applications. (ii) ECG has been widely used for clinical diagnosis and monitoring of CVDs, such
as arrhythmia, heart structure changes, etc. [5]. In recent studies, portable and wearable ECG devices have been
developed to realize long-term monitoring and mobile health applications. Miniaturized patch ECG devices like
Zio monitor [45] and CarePulse [4] can provide single-lead ECG through attaching to the anterior chest, and
these devices have demonstrated their ability to detect and classify arrhythmias such as atrial fibrillation (AF) and
premature beats [22] with residual CNN. However, they are still conventional ECG devices requiring electrode
patches, which may lead to allergic skin problems and medical waste. Smartwatches are another type of wearable
devices for ECG monitoring, achieving AF [24] and ischemia [9] detection in recent works. However, they do not
support long-term monitoring due to the requirement of actively touching the electrode.
Contactless cardiac sensing.Wireless signals, including WiFi, ultra wide band (UWB) and mmWave have

been investigated for contactless cardiac health monitoring in recent years, mainly through capturing the thorax
wall vibration to extract mechanical activities of hearts. (i) Early works deploy WiFi [40, 41], UWB [13] and
mmWave radar [39, 49] to monitor heart rate and its variability. Based on heart rate monitoring, a variety of
contactless cardiac sensing applications can be realized unobtrusively, such as emotion recognition [49] and
stress level estimation[21]. [20] further attempts to capture the fine-grained atrial and ventricular vibration
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called seismocardiography (SCG) using mmWave radar, which is realized through multichannel beamforming
and 1D-CNN. In our early work [47], we propose an IQ-domain arrhythmia detector for mmWave radar signal,
which is an end-to-end arrhythmia monitoring system with raw IQ signal input. (ii) Since the electrical activities
of heart are the gold standard in medical usage, recent studies have focused on contactless ECG monitoring
[11, 42, 43], which take advantages of generative models to transform wireless signals into ECG data. For instance,
CardiacWave [43] designs an attention and LSTM based CaSE-ECG Solver to reconstruct ECG-like signal via
Cardiac-mmWave scattering effect. RF-ECG [42] proposes a cGAN model to generate ECG signal based on the
condition from UWB cardiac sensing.

Different from prior works, AirECG promotes the realization of contactless ECG monitoring for real patients
with cardiac diseases. More specifically, we try to realize ECG synthesis even for irregular and abnormal heartbeats,
which can be achieved through multiple iterations inference to improve the deep learning model. In this way,
AirECG can implement accurate and robust cardiac disease monitoring in practical scenarios.

9 Conclusion
In this paper, we propose AirECG, a mmWave-based contactless ECG system that can be used for disease
monitoring in daily scenarios. We custom-design a cross-domain diffusion model that can transfer mechanical
domain chest vibration into electrical domain ECG, which is achieved through multiple iterations of denoising
inference, so as to accurately synthesize ECG wave even during abnormal heartbeats. In addition, we enhance the
robustness of AirECG by ECG calibration guidance, which helps to address the variability in ECG features caused
by probabilistic diffusion model and individual differences. Our experiment illustrates that AirECG achieves
compelling results for ECG monitoring, which implies a significant improvement over previous contactless ECG
works. We believe that AirECG promotes a meaningful step towards contactless ECG, which is promising to
realize disease screening, severity evaluation and management in both healthy individuals and patients.
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