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ABSTRACT
Existing smartphone-based Augmented Reality (AR) systems are
able to render virtual effects on static anchors. However, today’s
solutions lack the ability to render follow-up effects attached to
moving anchors since they fail to track the 6 degrees of freedom (6-
DoF) poses of them. We find an opportunity to accomplish the task
by leveraging sensors capable of generating sparse point clouds
on smartphones and fusing them with vision-based technologies.
However, realizing this vision is non-trivial due to challenges in
modeling radar error distributions and fusing heterogeneous sen-
sor data. This study proposes FollowUpAR, a framework that inte-
grates vision and sparse measurements to track object 6-DoF pose
on smartphones. We derive a physical-level theoretical radar er-
ror distribution model based on an in-depth understanding of its
hardware-level working principles and design a novel factor graph
competent in fusing heterogeneous data. By doing so, FollowUpAR
enables mobile devices to track anchor’s pose accurately. We im-
plement FollowUpAR on commodity smartphones and validate its
performance with 800,000 frames in a total duration of 15 hours.
The results show that FollowUpAR achieves a remarkable rotation
tracking accuracy of 2.3◦ with a translation accuracy of 2.9𝑚𝑚,
outperforming most existing tracking systems and comparable to
state-of-the-art learning-based solutions. FollowUpAR can be inte-
grated into ARCore and enable smartphones to render follow-up
AR effects to moving objects.
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1 INTRODUCTION
Augmented Reality (AR), particularly Mixed Reality (MR), enhances
the real world by rendering virtual overlays on users’ field of view
through cameras, which promises to provide unprecedented im-
mersive experiences in entertainment, education, and healthcare.
Additionally, reports forecast that 99 million AR/VR devices will be
shipped in 2021 [40], and the market will reach 108 billion dollars
by then [41].

The well-known mobile AR solutions such as ARKit [24] and
ARCore [8] enable a smartphone to recognize surfaces (i.e. sets of
keypoints) as the anchors and allow users to pin virtual objects on
them. They are able to further continuously track the pose1 of the
smartphone to adjust the locations of virtual effects in the user’s
view when the smartphone is moving with the anchors stationary.
However, once the anchors move, they will fail to render follow-up
effects on these moving targets since nowadays AR frameworks can
merely track the pose of smartphones rather than anchors. Specifi-
cally, as illustrated in Fig. 1a, when a target dragon changes its pose,
the virtual flame rendered by ARCore might lose its target. The
awful experience is similar for the Rubik’s Cube example. Ideally, an
AR framework should render the virtual effects or measurements
without misalignment. Therefore, pose tracking of anchors is key
to further bridge the gap between virtuality and reality in mobile
AR applications.

Existing vision-based 6-DoF tracking solutions include: 1. lever-
aging expensive and sophisticated sensors or devices (e.g., Microsoft
HoloLens2 and Magic Leap One headsets are equipped with 4 dif-
ferent types of cameras including color, gray, depth, and IR [44]),
however, these sensors are not concurrently available on commer-
cial smartphones; 2. only using classical visual feature matching
techniques to optimize object poses, but the cumulative drift due to
scale ambiguity leads to virtual effects misalignment (Fig. 1b); and 3.
deep-learning-based methods, however, these approaches require
complex pre-modeling of specific objects and pre-training of neu-
ral networks in advance [45, 48]. They can neither track arbitrary
objects (Fig. 1c) nor run on phones in real-time. In a nutshell, none
of the previous solutions can be implemented on smartphones in
ubiquitous scenarios due to limited sensors and resources onboard
and the uncertainty of objects and environments.

Nowadays, sensors capable of generating sparse point clouds2
are gradually integrated into commercial smartphones, e.g., Google
1The pose in this article represents the position and orientation of an object, which is
a variable with six degree-of-freedom (6-DoF).
2A point cloud is a set of data points in space, each associated with a reflection location
on the surface of a 3D object typically.
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Figure 1: Running demo comparison of FollowUpAR and other solutions. FollowUpAR is capable of rendering follow-up AR effects
on moving anchors. Compared with FollowUpAR, (a) ARCore is currently unable to track the pose of moving anchors, and classical visual
(b) Feature-matching-based approaches have a large error due to scale ambiguity. (c) Deep-learning-based methods typically require
complex pre-training of the target, hence cannot track arbitrary objects in real-time.

Pixel 4 and Huawei P30 pro. This inspires us to leverage the relative
sparse measurements (e.g., mmWave radar) and fuse them with
vision techniques to track 6-DoF pose of anchors continuously in
real-time. Albeit inspiring, translating this intuition into a practical
AR framework is non-trivial and faces significant challenges:

• Radar errors are difficult to model. Existing works gen-
erally assume that mmWave radar error follows a normal
distribution and neglect the cause of errors [11, 22, 47]. In
other words, there lacks a theoretical model of radar error
distribution, leading to inexact optimization goals, and even-
tually, resulting in precision bottlenecks.

• Heterogeneous data are difficult to fuse. Unlike visual
features in terms of precision, scale, and density, the sparse
point clouds have a relatively low spatial resolution. To fuse
such heterogeneous sensor data, previous fusion frameworks
(e.g., extended Kalman filter [39], particle filter [51]) usually
suffer from severe cumulative drift error, thus not competent
in continuous high accuracy pose tracking tasks.

To tackle the above challenges, we design and implement Fol-
lowUpAR, the first framework that fuses mmWave radar andmonoc-
ular vision to track the 6-DoF pose of anchors. FollowUpAR can be
integrated into mobile AR frameworks and further enable them to
render follow-up virtual effects in scenarios with moving anchors.

In FollowUpAR, firstly, to improve mmWave radar measurement
accuracy, we dig deeper into error sources from its hardware design
and working principles. On this basis, we derive PRED model, a
Physical-level theoretical model of Radar Error Distribution, to
benefit further optimization of the tracking result. Secondly, to
perform high accuracy pose tracking, we leverage and modify a
factor graph to fuse heterogeneous data in a tightly coupled manner.
Specifically, we elaborately design the factor nodes and variable
nodes in the factor graph for tracking anchor’s 6-DoF pose continu-
ously.

We have fully implemented FollowUpAR on Google Pixel 4, the
running demo is shown in Fig. 1d. We also conduct extensive ex-
periments with various object-camera distances and object moving
speeds in two different scenarios (a pure laboratory and a crowded
office). We further evaluate the robustness of FollowUpAR under
conditions of diverse light intensity, object occlusions, and dynamic

background motion. The entire experiment lasts around 15 hours,
collecting 800,000 video frames as input. We compare FollowU-
pAR with three related works, including a classical visual feature-
matching method (ICP [57]) and two state-of-the-art learning-based
solutions (NOCS [46] and PoseRBPF [9]). The experiment results
show that FollowUpAR achieves an average rotation accuracy of
2.3◦ and a translation accuracy of 2.9𝑚𝑚, outperforming ICP and
NOCS by > 45%. The performance of FollowUpAR is comparable to
PoseRBPF, however, only FollowUpAR can track arbitrary objects
in a real-time manner on resource-limited smartphones and require
no prior training.

In summary, the main contributions are as follows:

• We propose FollowUpAR, as far as we are aware of, the
first framework that fuses sparse measurement and vision
to track object 6-DoF pose. FollowUpAR can be integrated
into mobile AR frameworks and facilitate smartphones to
render follow-up AR effects on moving objects.

• We propose the PRED model to push the limit of mmWave
radar measurement accuracy by exploring and revealing the
cause of radar error from its hardware design and working
principles.

• We design a novel factor-graph, which can fuse heteroge-
neous data with different spatial resolution, and achieve
continuous 6-DoF pose tracking for moving objects.

• We implement and extensively evaluate FollowUpAR as well
as 3 related works. The evaluation result shows the feasibil-
ity and effectiveness of this system to realize follow-up AR
effects rendering for mobile AR scenarios.

The rest of this paper is organized as follows. We first present
the overview of FollowUpAR in Section 2, followed by detailed
descriptions of the sensor tracking model in Section 3 and fusion
framework in Section 4. The implementation and evaluation of
our system is shown in Section 5. We discuss the related work in
Section 6 and conclude FollowUpAR in Section 7. We also attach
several Appendix sections including detailed formula derivations
of essential variables.
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Figure 2: System architecture of FollowUpAR.

2 SYSTEM OVERVIEW
The architecture of FollowUpAR is illustrated in Fig. 2. As seen, Fol-
lowUpAR can be integrated into ARCore as an additional function
module to continuously provide the essential information of the
6-DoF pose of a moving anchor. Eventually, FollowUpAR enables
ARCore to render follow-up effects on it. We first briefly intro-
duce the architecture of ARcore, followed by the description of
FollowUpAR workflow.

2.1 ARCore Architecture
As shown in the left part of Fig. 2, there are three main capabilities
in the current ARCore platform: camera motion tracking, plane
detection, and real-time rendering. The camera motion tracking
module allows the mobile devices to track their own rotation and
translation relative to the world by leveraging VO [42] or VIO [37].
Further, the plane detection module allows the phone to detect the
size and location of all types of surfaces (e.g., horizontal or vertical
surfaces, like tables or walls) suitable for placing virtual objects.
Finally, after a user clicks on the screen to place a virtual object,
ARCore instantly renders the virtual effect, and adjust the rendering
on the screen based on the pose reported by the camera motion
tracking module.

However, today’s ARCore requires the anchors to be static since
ARCore only adjusts the renderings according to the camera pose
rather than the anchor’s pose.When the anchormoves, the rendered
effects may be misaligned.

2.2 FollowUpARWorkflow
FollowUpAR aims at bridging the gap between virtuality and reality
by providing ARCore with 6-DoF tracking capability. As shown in

𝒀𝒀

𝑿𝑿

𝒁𝒁
Camera Tracking Model

Radar Tracking Model

𝐷𝐷 � 𝒏𝒏

𝑶𝑶 : Object Reference System 𝑹𝑹 : Radar Reference System

𝑪𝑪 : Camera Reference System

𝑹𝑹𝑅𝑅𝐶𝐶 , 𝒕𝒕𝑅𝑅𝐶𝐶

Pose: 𝜽𝜽 = 𝑹𝑹𝑹𝑹𝑹𝑹, 𝒕𝒕𝑹𝑹𝑹𝑹

Figure 3: Illustration of reference systems and essential vari-
ables in FollowUpAR

the right part of Fig. 2, FollowUpAR consists of three main compo-
nents: Radar Tracking Model, Camera Tracking Model, and factor-
graph-based Pose Optimization. Specifically, FollowUpAR first takes
time-synchronized video stream and mmWave radar measurements
of an anchor as inputs. The radar measurements are processed to
generate a sparse 3D point cloud in Radar Tracking Model, while
visual feature points on each frame are extracted and matched in
Camera Tracking Model. Thereafter, based on the sensors’ working
principles and their measurement noise distributions, FollowU-
pAR derives objects’ motion and pose estimations from radar mea-
surements and visual features matching, respectively. Finally, the
factor-graph-based Pose Optimization jointly fuses and optimizes
the results from Camera Tracking Model as well as Radar Tracking
Model, and then reports accurate 6-DoF pose of the anchor in a
real-time manner.

3 SENSOR TRACKING MODEL
We first briefly describe and illustrate some essential variables in
FollowUpAR. As shown in Fig. 3, there are three reference (a.k.a.,
coordinate) systems in FollowUpAR: the camera reference system C,
the radar R and the anchor object O. Therein, C and R keep stationary,
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Figure 4: Model and noise analysis of mmWave-radar-based object motion tracking

and they are rigidly attached on the smartphone, while O follows
the motion of the object. We define the object’s pose, the goal of
FollowUpAR, as the transformation from coordinate system O to R.
Specifically, FollowUpAR optimizes and reports object’s 6-DoF pose
𝜽 𝑖 =

{
𝑹𝑖RO, 𝒕

𝑖
RO

}
at each timestamp 𝑖 , where 𝑹RO and 𝒕RO are rotation

and translation from O to R3, respectively. The transformation from
C to R (i.e. 𝑹RC and 𝒕RC) can be easily obtained from calibration [14].

As aforementioned, FollowUpAR contains two kinds of sensor
tracking model: Radar Tracking Model and Camera Tracking Model,
which operate simultaneously and estimate object’s motion or pose,
respectively. In this section, we first briefly describe and illustrate
some essential coordinates and optimization variables in FollowU-
pAR, followed by a sequential presentation of these two tracking
models. For each model, we will present two aspects: 1) how to de-
rive the object’s motion or pose from the input data (visual images
or radar samples); and 2), equally importantly, where the tracking
result’s error comes from and how to accurately profile its distribu-
tion, which is the basis for further fusion and optimization of the
system and influences the precision bottleneck.

3.1 Radar Tracking Model
3.1.1 Radar-based Motion Tracking. In this part, we describe how
to calculate the distance 𝐷 as well as its direction vector 𝒏 from
radar to the object leveraging mmWave frequency modulated con-
tinuous wave (FMCW) signals and, on the basis of this, resolve the
translational component 𝒕RO of the object’s pose 𝜽 .

Distance Calculation: As shown in Fig. 4a, the frequency dif-
ference between the transmitted signal (TX signal) and received
signal (RX signal) reflects the signal propagation time, which fur-
ther indicates the distance between the object and radar. Denote
the time-variant distance between the radar and the object as 𝐷 (𝑡),
the transmitted and received signals can be expressed as:

𝑆𝑇𝑋 (𝑡) = exp[ 𝑗 (2𝜋 𝑓𝑐𝑡 + 𝜋𝐾𝑡2 + 𝜙0)],

𝑆𝑅𝑋 (𝑡) = 𝛼𝑆𝑇𝑋 [𝑡 − 2𝐷 (𝑡)
𝑐

],
(1)

where 𝛼 is the attenuation rate, 𝑓𝑐 is the starting frequency, 𝐾 is
the chirp slope of FMCW signal, and 𝑐 represents the speed of light.
Both TX and RX signal will then be put into the mixer and low-pass
filter LPF(·) to extract the intermediate frequency signal (IF signal)

3We use the Lie algebraic [2] representation of object poses, where rotation 𝑹 and
translation 𝒕 are both three-dimensional vectors

as:

𝑆𝐼𝐹 (𝑡) = LPF[𝑆∗𝑇𝑋 (𝑡)𝑆𝑅𝑋 (𝑡)] ≈ 𝛼 exp[ 𝑗2𝜋 ( 2𝐾𝐷 (𝑡)
𝑐

)𝑡], (2)

whose frequency value 𝑓𝐼𝐹 contains the distance information. After
applying the Range-FFT operation [10, 27] on the IF signal, 𝑓𝐼𝐹 will
be extracted. Then the distance can be calculated as:

𝐷 =
𝑐 𝑓𝐼𝐹

2𝐾 . (3)

Direction Acquisition: With a well-designed antenna array,
mmWave radar can also get the object’s direction. As shown in
Fig. 4b, the antennas are arranged as two orthogonal linear antenna
arrays. Each of the linear array can acquire an AoA (i.e. the angle
between the array direction and the RX signal direction) based on
the phase difference between two adjacent antennas with spacing
of 𝑑 :

cos𝜃 =
Δ𝜙𝜆

2𝜋𝑑 , (4)

where 𝜃 is the AoA and 𝜆 is the wave length, and Δ𝜙 is the phase
difference. Since the radar has two orthogonal linear antenna arrays,
two different AoA 𝜃𝑥 and 𝜃𝑦 can be acquired. Then, the unit vector
indicating the object’s direction can be represented as:

𝒏 =

[
cos𝜃𝑥 cos𝜃𝑦

√︃
1 − cos2 𝜃𝑥 − cos2 𝜃𝑦

]T
. (5)

To sum up, with both the distance and angle calculations, the
mmWave radar can get the object’s 3D location 𝑷R in radar refer-
ence R as:

𝑷R = 𝐷𝒏. (6)
FollowUpAR leverages mmWave radar to track target’s 3D loca-

tion and estimate the translation of the target 𝒕RO at each timestamp:

𝒕 𝑗RO = 𝒕𝑖RO + 𝑼 𝑖 𝑗R +𝒘𝑖 𝑗

= 𝒕𝑖RO +
(
𝑷 𝑗R − 𝑷𝑖R

)
+𝒘𝑖 𝑗 ,

(7)

where 𝑼 𝑖 𝑗R is modeled as the difference between two radar calcula-
tion results at time 𝑖 and 𝑗 in the radar-reference. The𝒘𝑖 𝑗 represents
the random error of the measurement noise. The analysis of the
causes of error 𝒘𝑖 𝑗 , as well as modeling of its probability distri-
bution determine the accuracy bottleneck of the system. Unlike
previous works that neglected to explore it, in what follows, we will
analyse the error sources of𝒘𝑖 𝑗 from mmWave radar’s hardware
design and working principles.

4
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3.1.2 Radar Error Analysis from Physical-level. We systematically
analyse the error distribution of the mmWave FMCW radar from a
down-to-top perspective. In general, measurement errors can be
roughly divided into two categories: 1) intrinsic systematic errors,
which cause constant measurement biases; and 2) extrinsic random
errors, which result in variances around the true value.

The intrinsic systematic error comes from the imperfect design
of the mmWave radar device. When the TX signal is generated,
it needs to pass through a certain waveguide length before being
propagated into the air, and vice-versa for RX. Although the extra
propagation distance costs additional time, the bias between the
real distance and the calculated result is constant. Therefore, with
a pre-calibration, subtracting the additional propagation distance
from the calculated result is sufficient to correct it.

In contrast, the extrinsic random errors are difficult to address by
trivial calibrations. Here we give several essential components of
them:

1) Sampling Error. The mmWave radar measures the distance
by extracting 𝑓𝐼𝐹 from the IF signal. However, as shown in Fig. 4c,
there is a sampling error 𝑛𝑠 due to the limited sampling rate, and
the extracted discrete frequency follows a uniform distribution.
Therefore, the measured distance 𝐷 proportional to 𝑓𝐼𝐹 follows a
uniform distribution.

2) Thermal Noise. In mmWave radar, the FMCW signals is
generated by a voltage control oscillator (VCO) whose output fre-
quency is proportional to the input voltage. The thermal noise in
the circuit makes the input voltage follows a zero-mean normal
distribution and further lead to an error of the frequency 𝑓𝐼𝐹 .

3) AWGN Channels. The FMCW signal is inevitably interfered
with by an additive white Gaussian noise (AWGN) during propaga-
tion, which causes its phase to follow a uniform distribution. Since
multiple antennas measurements average the phase difference, the
resulted difference can be treated as a normal distribution.

We model each error source respectively, fuse them together,
and eventually obtain Physical-level Radar Error Distribution (PRED).
The detailed derivation of relevant equations is presented in Ap-
pendix A. In brief, the probabilistic density function 𝑓 (·) of PRED
is formulated as follow:

𝑓 (𝑒) =
∫ 𝑎

−𝑎

1
2𝑎

1
√

2𝜋𝜎
exp (− (𝑒 − 𝑥)2

2𝜎2 )𝑑𝑥

=
1
2𝑎

(
Φ( 𝑒 + 𝑎

𝜎
) − Φ( 𝑒 − 𝑎

𝜎
)
)
,

(8)

where 𝑎 and 𝜎 are parameters of the uniform distribution and
normal distribution, respectively (can be easily obtained from pre-
calibration). The Φ(·) indicates the cumulative distribution function
(CDF) of the standard normal distribution. Moreover, since 𝒘 in
Eqn. 7 follows a superposition of two independent PRED (𝒘𝑖 𝑗 =
𝒘 𝑗 −𝒘𝑖 ), the probabilistic density function of random variable 𝒘
can be written as:

Ψ(𝑒) =
∫ ∞

−∞
𝑓 (𝑥) 𝑓 (𝑒 + 𝑥)𝑑𝑥 . (9)

3.2 Camera Tracking Model
In this section, we present how to estimate the target’s pose 𝜽 (both
𝑹RO and 𝒕RO, i.e. rotation and translation) based on the visual feature
matching results, as illustrated in Fig. 5.

Pose TransformationCamera Pose 1
Camera Pose 2

3D Map Point Inlier

2D-3D point Association
Acquire Pose by PnP

2D Feature Point Inlier
2D Feature Point Outlier

3D Map Point Outlier

Pose Transformation

3D Point

2D-3D point Association

Feature Matching
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Figure 5: Illustration of vision-based object pose tracking

Vision-basedPoseTracking:We consider a conventional pinhole-
camera model [12, 13, 18] with a projection function 𝝅 : R3 → Ω,
which transforms a 3D point 𝑿C in camera reference C, into a 2D
pixel 𝒙 in image plane, where 𝒙 ∈ Ω ⊂ R2. To be more specific:

𝝅 (𝑿C) =

𝑓𝑥
𝑋C
𝑍C

+ 𝑐𝑥

𝑓𝑦
𝑌C
𝑍C

+ 𝑐𝑦

 , 𝑿C =
[
𝑋C 𝑌C 𝑍C

]T
, (10)

where
[
𝑓𝑥 𝑓𝑦

]T is the focal length of the camera and
[
𝑐𝑥𝑐𝑦

]T is the
principle point. Both of them are the camera intrinsic parameters.
For ease of notion, this projection model doesn’t consider the dis-
tortion error produced by the camera. When extracting keypoints
on the image, FollowUpAR first undistort their coordinates so that
they can be matched correctly.

The monocular camera provides FollowUpAR an observation
model ℎ(·), which reflects the target’s 6D pose in the image plane.
For the 𝑘-th feature point at time 𝑖 , we have:

𝒙𝑖 (𝑘) = ℎ
(
𝑿𝑖O (𝑘), 𝜽

𝑖
)
+ 𝒗𝑖 (𝑘)

= 𝝅
(
𝑿𝑖C (𝑘)

)
+ 𝒗𝑖 (𝑘)

= 𝝅
(
𝑹CR

(
𝑹𝑖RO𝑿

𝑖
O (𝑘) + 𝒕𝑖RO

)
+ 𝒕CR

)
+ 𝒗𝑖 (𝑘),

(11)

where 𝑿𝑖O (𝑘) is the corresponding 3D point of feature point 𝒙𝑖 (𝑘)
in object reference, and 𝒗𝑖 (𝑘) is the random noise of the feature
point.
Tracking Error Distribution: Most existing vision-based sys-
tems [30, 31, 52] treat 𝒗𝑖 (𝑘) as Gaussian distribution (i.e. normal
distribution). The assumption has been proved to be effective in
many tracking systems [12, 18]. Similarly, FollowUpAR also per-
forms the least square optimization to minimize the error:

𝜽 𝑖 = arg min
𝜽 𝒊

∑︁
𝑘

∥𝒙𝑖 (𝑘) − ℎ
(
𝑿𝑖O (𝑘), 𝜽

𝑖
)
∥2

2 . (12)

3.3 Target Object Separation
As a reminder, it is our superiority that FollowUpAR does not require
any prior knowledge of the environment or the target object (e.g.,
size, shape, color). Previous learning-based solutions require either
a pre-trined neural network to recognize the target from the whole
image [23, 48], or a 3D rigid model of the target [9, 25], which
is labor-intensive and time-consuming. FollowUpAR, in contrast,
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leverages the user’s tapping on the screen to obtain the rough
location of the target object4. In the following tracking process,
FollowUpAR will rapidly and precisely separate the target object
from the background by a filter-like method.

Specifically, once the user clicks on the screen to give an rough
target location �̄� in the image plane, FollowUpAR selects 8 near-
est matched feature correspondences around �̄� and estimate an
approximate fundamental matrix 𝑭 , which represents the inter-
frame relative pose of the selected features based on epipolar con-
straint [18]. Since all selected feature points are concentrated in
a small region on the target, we assume that no background fea-
tures are included. Further, FollowUpAR checks all matched feature
points in two frames:

𝒙T
1 𝑭𝒙2 < 𝜖, (13)

where 𝜖 is a predefined threshold. Based on Eqn. 13, inliers (i.e. fea-
tures on the anchor object) are reserved, and outliers (i.e. features
on the background) are removed. Finally, based on Eqn. 10, we
know that the anchor object must approach the ray starting from
the camera optical center and passing through �̄� in the image plane.
By searching the radar point closest to the ray, FollowUpAR finds
out the radar point of the target and filters other measurements.

4 FACTOR-GRAPH-BASED POSE
OPTIMIZATION

In this part, we focus on the fusion (a.k.a., joint optimization) of
the above two tracking models. We design a factor graph based
Pose Optimization framework, which takes visual and radar estima-
tions as input and outputs object’s pose in real-time. As illustrated
in Fig. 6, the whole optimization process consists of two paral-
lel tightly coupled modules: Tracking Optimization Module (TOM)
and Modeling Optimization Module (MOM). Specifically, the TOM
ensures the continuous tracking of the object’s pose with high pre-
cision through a combination of short-term (Inter-frame Tracking,
Fig. 6a) and long-term (Local Pose Tracking, Fig. 6b) optimization.
The MOM constructs and optimizes the object’s 3D point cloud
during the tracking process, which in turn enhances the quality
of visual feature-point matching and thus improves the tracking
performance. A detailed theory of the proposed factor graph is
described in Appendix B.

4.1 Tracking Optimization Module
In this section, we introduce the tracking optimization module
(TOM), which continuously tracks the 6-DoF pose of the anchor
object by both short-term and long-term optimization.

Inter-frame Tracking. As shown in Fig. 6a, once a camera
frame and the corresponding radar measurements are available,
the inter-frame optimization is performed to give an instant pose
tracking result. Similar to modern SLAM systems [31], FollowUpAR
first utilizes a constant velocity motion model to predict the current
object pose based on the previous one:

�̄�𝑖RO (𝑹𝑖−1
RO )T = 𝑹𝑖−1

RO (𝑹𝑖−2
RO )T,

�̄�𝑖RO − 𝒕𝑖−1
RO = 𝒕𝑖−1

RO − 𝒕𝑖−2
RO .

(14)

4A user needs to interact with the screen to determine the initial location of virtual
effects in most AR applications.

Then FollowUpAR performs a guided search of the 3D points
observed in the last frame. As shown in Fig. 6a, current object pose
𝜽 𝑖 is constrained by two factor nodes. The optimization problem
can be formulated as follows:

𝝌∗ = arg min
𝝌

(
𝑬𝑖
𝑟𝑎𝑑𝑎𝑟

+ 𝑬𝑖𝑝𝑟𝑜 𝑗

)
,

𝝌 = {𝑹𝑖RO, 𝒕
𝑖
RO},

(15)

where the camera projection error term can be given based on
Eqn. 27 and Eqn. 28:

𝑬𝑖𝑝𝑟𝑜 𝑗 = − log
(
𝐾∏
𝑘=1

𝑝 (𝒙𝑖 (𝑘) |𝜽 𝑖 )
)

≈
𝐾∑︁
𝑘=1

𝜌

(𝒙𝑖 (𝑘) − 𝝅
(
𝑿𝑖C (𝑘)

)2

𝛀𝐶

)
,

𝑿𝑖C (𝑘) = 𝑹CR

(
𝑹𝑖RO𝑿

𝑖
O (𝑘) + 𝒕𝑖RO

)
+ 𝒕CR .

(16)

Note that the 𝜌 (·) indicates the Huber loss function [21] adopted
in FollowUpAR to increase its resilience to outliers. Similarly, the
mmWave radar error term is:

𝑬𝑖
𝑟𝑎𝑑𝑎𝑟

=𝜌

(
− log

(
𝑝 (𝑼 𝑖R |𝜽

𝑖 )
))

≈𝜌
(
− log

(
Ψ

(
(𝒕𝑖RO − 𝒕𝑖−1

RO ) − 𝑼 𝑖R

)))
.

(17)

Note that the initial value of the optimization is provided by con-
stant velocity model in Eqn. 14:

�̄� 𝑖 = {�̄�𝑖RO, �̄�𝑖RO}. (18)

Local Pose Tracking. As shown in Fig. 6b, for every few sec-
onds (in general, a keyframe5 is selected), the local pose tracking
is triggered to correct the accumulated error. As shown in Fig. 6b,
Local Pose Tracking takes all frames after the most previous KF as
input and jointly optimizes the pose. Denote the set of frames as
F , the optimization problem can be formulated as follows:

𝝌∗ = arg min
𝝌

∑︁
𝑖∈F

(
𝑬𝑖
𝑟𝑎𝑑𝑎𝑟

+ 𝑬𝑖𝑝𝑟𝑜 𝑗

)
,

𝝌 =
⋃
𝑖∈F

{𝑹𝑖RO, 𝒕
𝑖
RO}.

(19)

Global Pose Tracking is a particular case of Local Pose Track-
ing, where all KFs are included in the set F . It is triggered only if
there is a significant error occurs during the whole optimization
procedure. The users can also manually trigger it when they feel
the tracking error is intolerable.

Generally speaking, the performance of TOM, especially the
visual feature-matching-based optimization, highly depends on the
quality of the generated point clouds associated with the object. In
other words, if the point clouds are not updated and optimized in
parallel with TOM, FollowUpAR will suffer from degraded tracking
performance. According to our evaluation, leveraging TOM alone
for tracking will accumulate more than 15𝑚𝑚 translation and 7◦
rotation bias in merely 3 seconds, which hardly meet the needs of

5Keyframes (KFs) represent the frames with high quality of feature points over a period
of time. In FollowUpAR, KFs are automatically selected by the system, and the selection
strategy is similar to that in ORB-SLAM [30].
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Figure 6: Three Types of Optimization with Factor Graph. (a) and (b) are correspondingly short-term and long-term parts of TOM,
while (c) is MOM. The red dotted parts are fixed variables during each optimization process, while the green parts are the estimation goals.

AR applications. Therefore, in what follows, we will present how
to optimize the point clouds by MOM.

4.2 Modeling Optimization Module
Modeling Optimization Module (MOM) constructs and optimizes
the point clouds attached to the object. As shown in Fig. 6c, the
process is triggered when a new KF is selected during system oper-
ation. MOM leverages the set of recent frames after the previous
KF (denoted as F ), and all 3D points observed by those frames as
a point set P. Other frames (denoted as F ′), which share obser-
vations of these points in P, also contribute to the total cost but
are fixed during the optimization process. Similar to Local Pose
Tracking, in MOM, the cost function also includes the radar error
term 𝑬𝑟𝑎𝑑𝑎𝑟 and reprojection error term 𝑬𝑝𝑟𝑜 𝑗 :

𝝌∗ = arg min
𝝌

∑︁
𝑖∈F

(
𝑬𝑖
𝑟𝑎𝑑𝑎𝑟

+ 𝑬𝑖𝑝𝑟𝑜 𝑗

)
+

∑︁
𝑗 ∈F′

𝑬 𝑗
𝑝𝑟𝑜 𝑗

,

𝝌 =
⋃
𝑖∈F

{𝑹𝑖RO, 𝒕
𝑖
RO}

⋃
𝑘∈P

𝑿𝑘O ,
(20)

where 𝝌 is the optimization objective of MOM, which consists of
the 3D location of each point in P and the object’s pose in each
frame in F . In Eqn. 20, minimizing 𝑬𝑟𝑎𝑑𝑎𝑟 aims to make the opti-
mized target motion fit the mmWave radar measurements, while
minimizing 𝑬𝑝𝑟𝑜 𝑗 makes the association between the optimized
object 3D model and captured 2D frames conform to the projection
characteristics [31]. The determination of optimization window
length 𝑁 depends on the computation capability of the mobile
device.

Moreover, MOM also maintains the model of the target object,
creating new 3D points and culling points with large bias. Specifi-
cally, as the target object rotates and translates, the camera observes
several new visual features on the object from different perspec-
tives. Then, MOM creates new 3D points via the triangulation
algorithm [18]. It is worth noting that we assume the anchor object
is rigid (i.e. the keypoint pairwise distances remain constant). Once
the object’s shape has changed, MOM needs to remodel it, and the
tracking performance will deteriorate.

5 IMPLEMENTATION AND EVALUATION
5.1 Implementation and Methodology
Implementation: We implement FollowUpAR on a commercial
smartphone, Google Pixel 4, with a Snapdragon 855 processor
and 6GB memory. Nowadays, Google Pixel 4 is equipped with
a mmWave radar, however, the underlying signal acquisition API
has not been released yet6, thus we use an additional mmWave radar
board, Texas Instruments (TI) IWR1443, to transmit and receive
mmWave signals (77 GHz ∼ 81 GHz). The TI IWR1443 integrates
3 transmitting antennas (denoted as TX1∼TX3) and 4 receiving
antennas (denoted as RX1∼RX4), which form two linear antennas
on the horizontal plane. The raw samples are recorded by a TI
DCA1000EVM data acquisition board and further streamed to the
smartphone. The camera of the smartphone captures 1080p video
at 30fps, and the diagonal field of view (dFoV) is 78°. It is worth
mentioning that except the raw data sampling and streaming, entire
calculation tasks are processed on the smartphone in real-time, and
we aim at providing extra functional modules for smartphone-based
AR frameworks.

Experiment setting: Fig. 7 shows the experimental scenarios
in a laboratory and a crowded office. The experimental setup is
shown in Fig. 7a. As seen, the mmWave radar and camera are fixed
on a bracket in the front of the experimental area. We evaluate
FollowUpAR on a variety of target objects, including a plush doll,
a toy dragon, and some books. All these objects are of different
shapes, sizes, and colors. We also deploy four OptiTrack [33] cam-
eras with 180fps to cover an area of 3𝑚 × 8𝑚 for recording ground
truth. We conduct extensive experiments for around 15 hours and
collecte more than 800,000 video frames and 15GB mmWave raw
samples. We additionally use a Kinect-V2 for RGB-D data collection
to compare FollowUpAR with related works.

Comparative Methods: We compare our FollowUpAR with
three related systems including: 1)PoseRBPF [9], the state-of-the-
art deep learning based pose tracking system with monocular im-
ages as input, however, it can merely track pre-modeled object; 2)
NOCS [46], a CNN-based system for category-level object pose

6Google Pixel 4 aims at enabling intelligent gesture recognition leveraging mmWave
radar [1], and Android will gradually open data acquisition APIs.
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(a)

(b) (c)

(d) (e)
Figure 7: Experimental setup and scenarios of FollowUpAR. (a) A laboratory scenario. (b)-(e) A crowded office with different
illumination intensity (normal and weak), as well as diverse background dynamics (static, slight, and severe), respectively.
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(a) Translation Accuracy Comparison
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(b) Rotation Accuracy Comparison
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(c) Illustration of Tracking Performance

Figure 8: Overall performance comparison of FollowUpAR and three related works.(a) and (b) show the translation and rotation
accuracy comparison, respectively. (c) visually demonstrates the impact of an average 2-vs.-6◦ rotation errors (left row) and 3-vs.-7mm
translation errors (right row) on virtual effects rendering.

tracking, which takes RGB-D images as input; and 3) ICP [57], a
classical vision-based tracking algorithm by 3D point-cloud match-
ing, which has been integrated in many SLAM systems [31, 50]. To
compare FollowUpARwith PoseRBPF and NOCS, we first model the
three target objects and train neural networks in advance. Note that
none of these three solutions can run on smartphones in real-time,
hence we additionally use a server with multiple CPUs and GPUs
to run them offline.

Evaluation Metrics: FollowUpAR reports the real-time 6-DoF
pose of the object in each frame. Similar to related works, we calcu-
late the mean rotation error in degrees, and the mean translation
error in millimeters.

Robustness Experiments: To demonstrate the ubiquitousness
of FollowUpAR, we conduct experiments under diverse conditions,
including different environments, illumination intensities, and back-
ground motions, as shown in Fig. 7b-e. We also evaluate the impact
of different object-phone distances, occlusions, and velocities on
system performance to demonstrate the robustness of FollowUpAR.

5.2 Overall Performance
Fig. 8a and Fig. 8b depict the performance of the proposed Fol-
lowUpAR as well as three other comparative systems. Since the
two learning-based methods, NOCS and PoseRBPF, require com-
plex pre-training in the specific environment, we only compare

their performance in the laboratory scenario (Fig. 7a). As shown,
FollowUpAR outperforms NOCS and ICP and achieves competi-
tive performance compared with PoseRBPF. The average transla-
tion accuracy of FollowUpAR is 3.0𝑚𝑚, which outperforms NOCS
by 69.9%, and exceeds ICP by more than 74%. As for the rotation
tracking performance, the average accuracy of FollowUpAR is 2.6◦,
which outperforms NOCS and ICP by 47.9%, and 56.3%, respec-
tively. The 95th percentile accuracy outperforms these systems
by 47.3%, and 57.6%, correspondingly. As for the performance in
different scenarios, the average translation and rotation accuracy
of FollowUpAR in the crowded office (Fig. 7c-e) is 3.4𝑚𝑚 and 2.9◦,
respectively. Compared with the results in the pure laboratory, the
degradation of system performance is within 10%, demonstrating
the robustness of FollowUpAR to different environments. Fig. 8c
further illustrates a couple of rendering example of FollowUpAR
(i.e. 3𝑚𝑚 translation error and 2◦ rotation error) and ICP (i.e. 7𝑚𝑚
tran. error and 6◦ rota. error). As seen, with increased tracking
errors, the orientation and position of the virtual flame are grad-
ually misaligned (bottom row in Fig. 8c), which leaves users the
impression of distortion. On the contrary, the tracking accuracy
gap between FollowUpAR and PoseRBPF is within 10%, and the
rendering performance is almost identical (compared in columns
(c) and (d) of Fig. 8). Above theoretical and empirical results demon-
strate FollowUpAR achieves remarkable performance gains based
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Figure 9: Impact of Distance
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Figure 10: Impact of Occlusion
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on fusing vision and mmWave sensors. Moreover, as a reminder,
FollowUpAR can track an object’s pose in real-time and does not
require the complex pre- modeling or training procedure, ensuring
the ubiquitous of AR-based applications.

5.3 System Robustness Evaluation
5.3.1 Impact of Distance. We examine the impact of the distance
between the object and smartphone. The results are shown in Fig. 9.
As the distance grows from 1𝑚 to 5𝑚, the translation error increases
from an average 2.7𝑚𝑚 to 8.3𝑚𝑚 while the rotation error increases
from 2.4◦ to 7.5◦. In practical usage of mobile AR applications, the
distance between the smartphone and the anchor object is generally
no more than 3 meters. According to the experimental results, the
translation error at this distance is within 3.9𝑚𝑚 and the rotation
error < 3.1◦, meeting the needs of most AR applications.

5.3.2 Impact of Occlusion. We further verify the robustness of the
system when the target objects are partially occluded. As shown in
Fig. 10, when 25% of the object is occluded, FollowUpAR is still able
to maintain high performance with an average 3.5𝑚𝑚 translation
tracking accuracy and 4.1◦ rotation accuracy, and the accuracy
reduction is within 30%. When the rate rises to 50%, the average
translation error and rotation error increase to 8.0𝑚𝑚 and 7.2◦,
respectively. Compared with the other model-based and learning-
based methods, it is our superiority that FollowUpAR can track the
pose of target normally with partial occlusion.

5.3.3 Impact of Background Motion. We conduct experiments with
dynamic background motion (as shown in Fig. 7). The evaluation
result is presented in Fig. 11. As seen, although the tracking perfor-
mance decreases with the increasing of background dynamics, Fol-
lowUpAR still maintains an average translation tracking accuracy
of 4.5𝑚𝑚 as well as rotation accuracy of 4.3◦ in most challenging
scene. Referring to the rendering examples, we believe the accuracy
meets the needs of mobile AR scenarios. Moreover, as mentioned
above, a user can manually trigger the global pose optimization
function to avoid significant errors.

5.3.4 Impact of Environment & Illumination. The performance of
FollowUpAR in different environments with different lighting con-
ditions is shown in Fig. 12. Comparing the left and right clusters,
the performance of FollowUpAR is almost the same in different
environments. As for the system robustness under weak illumina-
tion intensity, FollowUpAR maintains the translation tracking bias
and rotation bias within 4mm and 3.8◦, respectively. Compared
with other learning-based solutions, FollowUpAR does not require
pre-training in different environments, making FollowUpAR more
ubiquitous.

5.3.5 Impact of Velocity. We further evaluate the robustness of
FollowUpAR on a different object moving velocities. The results of
rotation tracking bias and translation tracking bias are illustrated
in Fig. 14 and Fig. 13. We divide the velocities (linear velocity, 𝑣
and rotation velocity 𝜔) into three categories, corresponding to
the demands of different AR applications. In Fig. 14, the angular
velocity 1 indicates a slow rotation speed with 𝜔 < 5◦/𝑠 , while the
velocity 2 and velocity 3 represent medium and fast speed with
5◦/𝑠 ≤ 𝜔 < 10◦/𝑠 and 10◦/𝑠 ≤ 𝜔 ≤ 20◦/𝑠 , respectively. As seen,
the average rotation tracking error is 2.6◦, 5.2◦, and 8.3◦ under slow,
medium, and fast speed, respectively. With the rapid rotation, the
same feature points on the target object will fail to be observed
by consecutive frames, resulting in decreased orientation tracking
accuracy. Similary, in Fig. 13, the linear velocity 1, 2, and 3 repre-
sent slow, medium, and rapid translation speed with 𝑣 < 30𝑚𝑚/𝑠 ,
30𝑚𝑚/𝑠 ≤ 𝑣 < 60𝑚𝑚/𝑠 , and 60𝑚𝑚/𝑠 ≤ 𝑣 < 120𝑚𝑚/𝑠 , respectively.
And the corresponding position tracking error is 3.0𝑚𝑚, 3.9𝑚𝑚,
and 4.9𝑚𝑚. Although the accuracy of pose tracking will decrease
slightly as the moving and rotating speed of the object increases,
the tracking performance of FollowUpAR with medium velocity
(5.2◦ orientation with 3.9𝑚𝑚 translation tracking accuracy) meets
the needs of the most smartphone-based AR applications.

5.4 System Micro-benchmark
We further experimentally analyze some core components of Fol-
lowUpAR, and in particular, the performance gains that each of
them brings into the overall system.
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Figure 16: Comparison of Different Fusion Framework

5.4.1 Effectiveness of Multimodule Fusion. In this part, we demon-
strate that 1) fusing radar and vision is superior to individual of
them, and 2) our proposed PRED model performs better in the pose
tracking task. As illustrated in Fig. 15a and Fig. 15b, the performance
of fusion-based approach far exceeds that of radar-only and vision-
only in terms of translation tracking accuracy and rotation accuracy,
respectively. Specifically, the average translation error under our
proposed PRED noise distribution, traditional normal noise distri-
bution, and radar-only-based ranging method is 3.0𝑚𝑚, 3.8𝑚𝑚,
and 7.0𝑚𝑚, respectively. As for the rotation tracking performance,
the average accuracy of PRED outperforms the normal distribution
by 18.8%, and the fusion-based tracking exceeds vision-only based
solution by 30%. The delightful results lies in our in-depth study of
the error generation mechanism of mmWave based ranging, instead
of simply treating it as a normal distribution as in previous works.

5.4.2 Anchor Separation. To evaluate the capability of FollowU-
pAR to separate the anchor object from a complex environment,
we conduct several experiments at a different object moving speed
and distance. The anchor separation process can be summarized
as a binary classification problem, which determines whether a
feature point is on the anchor object or not. For each experiment,
we evaluate the classification result and calculate the corresponding
F1-score as shown in Table 1. The result shows that when the dis-
tance is less than 3𝑚, and the anchor object moves with a relatively
low speed, the F1-score consistently achieves over 0.9, which is a
satisfactory result. With the increase of the distance and the moving
speed of the object, the performance of the anchor separation mod-
ule decreases. This is mainly due to reducing the effective feature
points on the object, resulting in an inaccurate pose reconstruction
process.

5.4.3 Comparison of Different Fusion Framework. We also compare
the pose tracking performance with different multi-modal data
fusion strategies. In this part of the experiment, we compare our
novel factor graph based fusion framework with another two fusion
approaches, particle filter (PF) and extended Kalman filter (EKF),

Table 1: F1-score of Anchor Separation

Distance
Speed Velocity 1 Velocity 2 Velocity 3

1 m 0.985 0.964 0.936
3 m 0.957 0.913 0.845
5 m 0.779 0.736 0.627

both widely used in previous works. Fig. 16a and Fig. 16 respectively.
As seen, for all experimental traces, FollowUpAR achieves enhanced
rotation tracking performance for more than 15% and 30% compared
to PF and EKF, respectively, and the rates increase to 40% and 60%
when tracking the translation. These outstanding performance, on
the one hand, is due to the leverage of the factor graph as a tightly
coupled manner to fuse multi-modal data; on the other hand, lies
in our theoretical derivation of the error distribution for the two
different observations, which have been demonstrated to be more
efficient.

5.4.4 System Efficiency. As a reminder, compared to existingmodel-
based and learning-based methods, it is our superiority that Fol-
lowUpAR can run on commercial smartphones in real-time and
does not require considerable resource overhead. Fig. 17a illustrates
the end-to-end latency (including mmWave-based tracking delay,
vision-based tracking delay, and fusion delay) through the whole
target pose tracking process. As seen, the average end-to-end la-
tency of FollowUpAR is around 60𝑚𝑠 , which indicates FollowUpAR
can run on mobile devices at 16fps, meeting the needs of most AR
applications. Fig. 17b and Fig. 17c further depict that the CPU usage
on the smartphone does not exceed 50% with an average mem-
ory usage under 300MB in the process. Compared with other deep
learning-based solutions, FollowUpAR leaves the smartphone with
sufficient computational resources to further render elegant special
effects, as tracking the anchor object’s pose is only the fundamental
part of the whole AR applications.

6 RELATEDWORK
We briefly review the related works in the following.

Vision-based Object 6-DoF Tracking. Most existing 6-DoF
tracking systems are based on a given 3D object model. Some previ-
ous works try to extract the edges [4, 6] or the color histogram [7]
of the target object from the image, and then match them with
the template model. Recent data-driven approches [15, 43] instead
learn to directly match input images with renderings [26] or silhou-
ette [5, 19] of the object model. PoseRBPF [9] compares the latent
code of the input images and that of the model rendering to recover
the rotation part of the object pose. Many deep learning based
methods [23, 48] utilize CNN-based networks to extract robust fea-
tures in images for pose estimation. However, the requirements
of knowing the object models confine these methods to a specific
object instance.

The category-level pose estimation techniques has drawn signif-
icant interests in research areas such as autonomous driving [36,
49, 58] due to the availability of large-scale datasets. These works
combine the classical keypoint matching ideas and modern deep
learning techniques by directly predicting either category-level
semantic keypoints [34] or 3D bounding box corners [38, 46]. How-
ever, supervised keypoints learning requires a large amount of

10



FollowUpAR: Enabling Follow-up Effects in Mobile AR Applications MobiSys ’21, June 24–July 2, 2021, Virtual, WI, USA

0 5 10 15 20 25 30
Runtime (s)

0

20

40

60

80

100

La
te

nc
y (

m
s)

Fusion mmWave Visual

(a) System Latency

0 5 10 15 20 25 30
Runtime (s)

0

20

40

60

80

CP
U 

W
or

klo
ad

 (%
) Fusion mmWave Visual

(b) CPUWorkload

0 5 10 15 20 25 30
Runtime (s)

0

100

200

300

400

M
em

or
y (

M
B)

Fusion mmWave Visual

(c) Memory Usage
Figure 17: System Efficiency on the Smartphone

labeled data, and the manually annotated keypoints or the bound-
ing box corners may not be the optimal landmarks to track. It’s
worth mentioning that the category-level object pose estimation
is only applicable to objects of specific shapes and sizes, and the
generalization problem still exists. Applying these methods to arbi-
trary objects may result in severe performance degradation or even
unavailability.

Compared with previous works, our FollowUpAR achieves de-
lightful tracking accuracy, without any prior knowledge (e.g., train-
ing data and 3D model). Besides, FollowUpAR is also a light-weight
mobile framework, which means the entire tracking process can be
executed on the smartphone in real-time, shedding lights on future
mobile AR/MR applications.

mmWave for Localization and Tracking.Millimeter-wave is
highly sensitive and more accurate due to its mm-level wavelength.
Previous works adopt mmWave for object tracking [47], human
localization [35, 53] and indoor map construction [17, 56]. However,
existing mmWave-based works fail to give the target object’s rota-
tion and can only achieve centimeter-level location accuracy due
to the limited sample rate of the hardware. Though some previous
works [28, 47] attempt to filter out the noise and adopt advanced
optimization methods to improve the location accuracy, it is still
difficult to achieve the millimeter-level result.

To break the accuracy bottleneck, our FollowUpAR explores
the actual error distribution of mmWave radar and fuses radar
measurement with monocular vision. Therefore, FollowUpAR can
not only track the rotation of the object but also achieves millimeter-
level location accuracy.

Sensor FusionTechniques.The Lidar-vision fusion techniques
are commonly used in autonomous driving systems for ego-motion
estimation and mapping. Most of these techniques [16, 20] are
mainly based on lidar’s dense point cloud, which provides the depth
information for each pixel [55] or feature points [54] in each cam-
era frame. This kind of fusion techniques, which directly associate
two types of measurements, are simple and efficient, however, can
only be applied for fusing two types of dense measurements (e.g.,
3D point cloud with high spatial resolution). Recent DNN-based
fusion systems [3, 29] adopt convolutional neural networks (CNN)
and recurrent neural networks (RNN) to fuse mmWave radar and
IMU signals for end-to-end ego-motion estimation. However, these
systems need large amounts of labeled training data and suffer from
performance degradation when the environment changes. Inspired
by existing visual-inertial odometry (VIO) systems [32, 37], a tightly
coupled fusion framework based on the factor graph is adopted in
FollowUpAR to jointly optimize the radar tracking model and the

camera tracking model. The tracking results given by FollowUpAR
represents the most likely 6D pose of the target object, which has
a clear interpretation in probability. The most important thing is,
compared with DNN-based methods, our fusion framework is faster
and more efficient, which guarantees its real-time performance on
resource-limited mobile devices.

7 CONCLUSIONS
In this paper, we propose the design and implementation of Fol-
lowUpAR, the first framework that fuses sparse measurement and
vision to track 6-DoF pose of object. The innovation of FollowUpAR
lies in two aspects: 1) we derive a theoretical model of radar error
distribution based on in-depth understanding of its hardware-level
working principles; and 2) we design a novel factor graph com-
petent in fusing heterogeneous data. Extensive evaluation results
demonstrate its superior performance over previous multi-agent
solutions. We integrate FollowUpAR in ARCore, and believe Fol-
lowUpAR takes a promising step towards enabling smartphones to
render follow-up effects in mobile AR applications.
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A PHYSICAL-LEVEL RADAR ERROR
DISTRIBUTION

According to the sources of physical-level noise mentioned in Sec-
tion 3.1, the Physical-level Radar Error Distribution (PRED) can be
derived as follows.

We first analyze the radar distance error caused by the limited
radar sampling rate Δ𝑓 . The extracted discrete frequency follows
a uniform distribution from 𝑓 0

𝐼𝐹
− Δ𝑓

2 to 𝑓 0
𝐼𝐹

+ Δ𝑓
2 . Based on the

radar ranging principle in Eqn. 3, the distance error also follows a
uniform distribution:

𝑛𝑠𝐷 ∼ U(−𝑐Δ𝑓4𝐾 ,
𝑐Δ𝑓

4𝐾 ) . (21)

Secondly, the thermal noise could also cause a distance error, which
can be formulated as follows:

𝑛𝑡𝐷 ∼ N(0, 𝑐𝜎𝑡2𝐾 ), (22)
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where the 𝜎𝑡 depends on the frequency stability of VCO, which can
be easily get from the hardware manual. We should also consider
the angle error caused by the AWGN channel:

𝒏𝑎 ∼ N(0, 𝜆𝜎𝑎2𝜋𝑑 ), (23)

where the 𝜎𝑎 is determined by the number of multipath in the
working environment. To sum up, we give the following equations:

𝐷 = 𝐷0 + 𝑛𝐷 = 𝐷0 + 𝑛𝑠𝐷 + 𝑛𝑡𝐷 ,
𝒂 = 𝒂0 + 𝒏𝑎,

(24)

where 𝑛𝐷 follows a superposition of a normal distribution and
a uniform distribution, and the 𝒏𝑎 follows a zero-mean normal
distribution. Based on the radar working principles, the analysis of
radar measurement error is shown as follows:

𝐷𝒂 = 𝐷0𝒂0 + 𝐷0𝒏𝑎 + 𝑛𝐷𝒂0 + 𝑛𝐷𝒏𝑎
≈ 𝐷0𝒂0 + (𝐷0𝒏𝑎 + 𝑛𝐷𝒂0)
= 𝐷0𝒂0 + 𝒏𝑃 .

(25)

Denote 𝒏𝑃 ∼ D(0, 𝑎, 𝜎) as the PRED, which can be treated as a
superposition of a normal distributionN(0, 𝜎) and a uniform distri-
bution U(−𝑎, 𝑎). Therefore, the probabilistic density function 𝑓 (·)
of radar error distribution can be obtained based on the convolution
formula as follows:

𝑓 (𝑒) =
∫ 𝑎

−𝑎

1
2𝑎

1
√

2𝜋𝜎
exp (− (𝑒 − 𝑥)2

2𝜎2 )𝑑𝑥

=
1
2𝑎

(
Φ( 𝑒 + 𝑎

𝜎
) − Φ( 𝑒 − 𝑎

𝜎
)
)
,

(26)

where Φ(·) represents the cumulative distribution function (CDF)
of the standard normal distribution.

B FACTOR GRAPH IN OUR SYSTEM
Generally speaking, a typical factor graph like Fig. 6 consists of
two types of nodes. The variable nodes indicate the values to be

optimized (e.g. 𝜽 𝑖 ), while the factor nodes represent the probability
relationship between two variable nodes (e.g. 𝑝 (𝒙𝑖 (𝑘) |𝜽 𝑖 ) ). To be
more specific, the factor nodes in our FollowUpAR can be further
divided into two types: the factor nodes based on the radar tracking
model denoted as 𝑝 (𝑼 𝑖R |𝜽

𝑖 ), and the factor nodes based on the
camera tracking model 𝑝 (𝒙𝑖 (𝑘) |𝜽 𝑖 ).

In order to estimate the values of a certain set of variable nodes
𝝌 = {𝜽 𝑖 |𝑖 ∈ P}, FollowUpAR optimizes all the factor nodes con-
nected with them based onmaximum a posteriori (MAP) estimation:

𝝌∗ = arg max
𝝌

∏
𝑖∈P

𝑝 (𝜽 𝑖 |𝑼 𝑖R)𝑝 (𝜽
𝑖 |𝒙𝑖 )

= arg max
𝝌

∏
𝑖∈P

(𝑝 (𝜽 𝑖 ))2𝑝 (𝑼 𝑖R |𝜽
𝑖 )

𝐾∏
𝑘=1

𝑝 (𝒙𝑖 (𝑘) |𝜽 𝑖 ),
(27)

which follows the Bayes theorem, and supposing all measurements
are independent. The 𝑝 (𝑼 𝑖R |𝜽

𝑖 ) and∏𝐾
𝑘=1 𝑝 (𝒙

𝑖 (𝑘) |𝜽 𝑖 ) are the likeli-
hood of the radar and camera measurements respectively, and 𝑝 (𝜽 𝑖 )
is a prior probability over 𝜽 𝑖 . In most cases no prior knowledge of
𝜽 𝑖 is available, so 𝑝 (𝜽 𝑖 ) can be treated as a uniform distribution (or
a constant), and thus, the MAP estimation reduces to maximum
likelihood (ML) estimation.

Considering that we have analyzed the random noise distribution
of 𝒗 in Eqn. 11 following a zero-mean normal distribution, and the
probabilistic density function of 𝒘 derived from Eqn. 9 as Ψ(·).
Therefore, the measurement likelihood can be presented as follows:

𝑝 (𝑼 𝑖R |𝜽
𝑖 ) ∝ Ψ

(
(𝒕𝑖RO − 𝒕𝑖−1

RO ) − 𝑼 𝑖R

)
,

𝑝 (𝒙𝑖 |𝜽 𝑖 ) ∝ exp
(
−1

2

𝑝 (𝒙𝑖 − 𝝅
(
𝑿𝑖C (𝑘)

)2

𝛀𝐶

)
,

(28)

where we use the notation ∥𝒆∥2
𝛀
= 𝒆T

𝛀𝒆. The 𝛀𝐶 is the informa-
tion matrix (i.e. inverse of the covariance matrix) of the camera
measurements.
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