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Abstract—Recent years have witnessed an increasing number
of mobile devices, posing a more diversified demand for device
localization solutions. Existing methods can locate connected
devices but fail to address the spatial proximity between devices
lacking direct communication links. This limitation impedes
numerous emerging applications, such as implicit control of IoT
device and proximity-based UAVs scheduling. In response to
this technical challenge, we introduce RF-Prox, the pioneering
system designed for the proximity estimation of non-directly
connected devices. RF-Prox determines the proximity between
devices by extracting and analyzing the spatio-temporal correla-
tion between two signals. RF-Prox introduces a Multi-Resolution
Spatio-Temporal Encoder (MRSTE) that extracts multi-scale
features from complex-valued wireless signals, capturing both
spatial and dynamic temporal characteristics. Additionally, the
Proximity Metric Adaptation Network (PMAN) bridges the gap
between high-dimensional signal characteristics and physical
proximity. To enhance scalability, we leverage a transfer learning
framework, significantly reducing the need for extensive data
collection and retraining. Extensive experiments demonstrate
RF-Prox’s outstanding performance across Wi-Fi and cellular
networks, achieving fine-tuned accuracy rates of 98.6% indoors
and 91.3% outdoors. Even without fine-tuning, the pre-trained
model achieves strong zero-shot performance, showcasing its
exceptional performance in both proximity estimation accuracy
and domain generalizability.

Index Terms—Domain adaptation, proximity estimation, trans-
fer learning, spatio-temporal encoder.

I. INTRODUCTION

LOCATION awareness is a key enabler for a wide range
of applications such as smart homes, augmented reality,

and security monitoring [1]. With the increasing number of
mobile devices, extensive research efforts have been devoted to
wireless-based localization, which infers the devices’ relative
locations from ubiquitous radio signals.

Despite the advances in positioning technologies such as the
Global Positioning System (GPS), which offers satisfactory
outdoor positioning accuracy, its performance is significantly
impaired under extreme weather conditions due to interference
or obstruction of satellite signals with ground devices [2].
Moreover, rapid urbanization has led to an increased in-
door time for individuals, escalating the demand for indoor
positioning services across commercial, governmental, and
communication sectors. This surge in demand places higher
requirements on the coverage of positioning services [3],
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(a) Implicit control of IoT device

User: “Turn on the TV”

IoT Device

IoT Device

Turned ON

Keep OFF

Access Point

Relatively Far
Nearby

Base Station

User: In danger, waiting for rescue.

Re
lat

ive
ly 

Fa
r

Nearby
UAV

Rapid Rescue

(b) Proximity-based UAVs scheduling
Fig. 1. Illustration of two application scenarios of RF-Prox.

highlighting the limitations of GPS in indoor environments
and emphasizing the need for integrated solutions suitable for
both outdoor and indoor wireless sensing in scenarios where
GPS is unavailable.

Current wireless localization methods are primarily de-
signed for devices with direct communication links, such
as wireless access points (AP) and user equipment (UE).
However, these methods fall short in determining spatial
relationships between non-directly connected devices (e.g.,
UE and IoT devices), a capability that is pivotal for a range
of emerging applications including implicit control of IoT
devices and proximity-based unmanned aerial vehicle (UAVs)
scheduling [4], as illustrated in Fig. 1.

One straightforward approach involves estimating the lo-
cation of each device independently, then deducing their
relative proximity from these estimates. However, geometric-
based approaches that rely on channel parameters like angle-
of-arrival (AoA) [5], [6], time-of-flight (ToF) [7], [8], and
their fusion [9], [10], are prone to significant errors in
non-line-of-sight (NLoS) conditions. On the other hand, the
fingerprint-based localization technique [11]–[13] is effective,
where radio-assisted LiDAR SLAM [13] improves accuracy
and speed significantly by integrating radio fingerprints with
LiDAR for mapping. However, fingerprint-based methods re-
quire extensive labeled data collection and faces major gen-
eralization challenges across different domains. In summary,
both traditional device localization methods exhibit significant
limitations in terms of practicality and scalability, making them
unsuitable for the task of proximity estimation.

Unlike traditional device localization methods, our approach
focuses on proximity estimation from a high-dimensional
feature perspective, rather than relying on the physical coor-
dinates of the devices. Inspired by the principle of ‘estimating
by comparing’, we observe that wireless devices nearby share
similar signal propagation characteristics. By analyzing and
comparing the spatio-temporal features encoded in the signals
received from two devices, we can estimate their proximity.
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Fig. 2. An overview of the RF-Prox, where solid and dashed lines represent data collection from source domain and target domain, respectively, with blue and
orange used to distinguish devices. The system workflow involves transforming CSI data into a proximity metric through the MRSTE and PMAN modules,
training a pre-trained model in the source domain, and then applying a transfer learning framework to fine-tune RF-Prox in the target domain. Here, different
domains represent varying scene setups, device placement configurations, and other environmental factors.

This approach eliminates the need for explicit estimation of
devices’ physical locations, thereby reducing errors associ-
ated with direct geometric parameter estimation in NLOS
environments. Additionally, when RF-Prox is transferred to
a new environment, devices with close physical proximity
will still exhibit high proximity in high-dimensional feature
space, making RF-Prox significantly superior to traditional
localization-based methods in both practicality and scalability.

Nonetheless, actualizing this concept into a functional sys-
tem presents formidable challenges. Firstly, the precise extrac-
tion of spatio-temporal features is complex, as conventional
geometric parameters like Angle of Arrival (AoA) and Time
of Flight (ToF) are plagued by significant inaccuracies in
Non-Line-of-Sight (NLoS) conditions [10]. Secondly, devising
a domain-adaptive proximity metric is essential, considering
the variability in signal propagation due to differing scenario
configurations and device placements, which directly affects
proximity assessments.

To address these challenges, we introduce RF-Prox, the
first proximity estimation system for wireless devices that are
not directly connected, adaptable to a wide range of radio
frequency signals. For accurate spatio-temporal feature extrac-
tion, we employ a data-driven strategy and create a complex-
valued neural network module called Multi-Resolution Spatio-
Temporal Encoder (MRSTE). This encoder excels at deriving
multi-scale latent representations from the wireless signal and
fusing them into a comprehensive feature vector that captures
the spatio-temporal characteristics of the wireless channel. To
establish a domain-adaptive proximity metric that enables RF-
Prox to quickly adapt to new environments, we formulate a
Proximity Metric Adaptation Network (PMAN), which com-
pares the spatio-temporal features of two wireless channels
to assess device proximity, incorporating domain adaptation
techniques. In RF-Prox, we utilize a transfer learning ap-
proach [14], enabling model pre-training on source domain
data followed by minimal fine-tuning with target domain
data, significantly diminishing the need for extensive target
domain data collection while maintaining broad generalization
capabilities. The transfer strategy is based on the assumption

that similar CSI distributions correspond to proximate dis-
tances within a scene. This assumption is consistent across all
scenarios and is fundamental to the effectiveness of transfer
learning in RF-Prox.

RF-Prox’s efficacy is validated through extensive evalua-
tions across over 9,000 domains, encompassing Wi-Fi-based
indoor environments and cellular-based outdoor scenarios,
with more than 1,000,000 data samples gathered. The eval-
uation results highlight that a fine-tuned RF-Prox achieves re-
markable accuracy of 98.6% and 91.3% in identifying the most
proximate device in indoor and outdoor scenarios, respec-
tively. Impressively, even without fine-tuning, the pre-trained
model demonstrates substantial zero-shot accuracy, reaching
92.2% and 88.9%, underscoring its exceptional performance
in proximity estimation accuracy and domain adaptability.
Additionally, RF-Prox’s superior spatial-awareness capability
is evidenced through its application of a sorting metric, the
Normalized Discounted Cumulative Gain (NDCG), in both
scenarios.

We summarize our contributions as follows.

• We propose RF-Prox, the first proximity estimation sys-
tem for non-directly connected wireless devices. RF-Prox
shows the domain-adaptive capability and can be easily
deployed in any target domain environment, making it a
promising step towards integrated sensing and communi-
cation.

• Our proposed Multi-Resolution Spatio-Temporal Encoder
is a pioneering attempt at applying complex-valued neural
networks to wireless sensing. The multi-resolution design
and transformer-based temporal processing model have
unique advantages and can also be integrated into other
types of wireless sensing applications.

• The transfer learning mechanism adopted by our system
has been proven effective, providing a new approach
to enhance the generalizability of data-driven wireless
systems.

• We implement and evaluate RF-Prox on both Wi-Fi-based
indoor environments and cellular-based outdoor scenar-
ios, which showcases the practicality and effectiveness of
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deploying RF-Prox in target domain scenarios. We made
our codes, data and pre-trained models publicly available1

to facilitate the research community.
Compared to our prior conference version [15], we have

made significant enhancements including expanding the sys-
tem to support full-scene proximity estimation across different
wireless signal types, thereby improving universality, scaling,
and facilitating Integrated Sensing and Communication (ISAC)
in the 6G era. In our module design, we have seamlessly inte-
grated transformer-based temporal analysis with CNN-based
spatial feature extraction, offering improved adaptability to
device mobility and bolstered support for analyzing temporal
data in practical applications. Additionally, we’ve replaced the
previous ordered MLP-based feature mapping module with an
unordered cosine similarity module, and extend the transfer
learning of simulation-to-reality to a more pervasive transfer
task under source and target domains. To validate these en-
hancements, we have comprehensively revised all experiments,
incorporated cellular-based outdoor scenarios, redesigned and
retrained our models, ensuring they are fine-tuned for the new
case. We’ve also conducted a full evaluation and optimization
of these additions. To foster transparency and collaboration,
we have made all related codes publicly available.

The rest of this paper is organized as follows. We begin with
an overview of RF-Prox in Section II, followed by the detailed
design of the MRSTE in Section III and PMAN in Section IV.
Our implementation and evaluation of RF-Prox are shown in
Section V, followed by the related work in Section VI, and
the conclusion in Section VIII.

II. SYSTEM OVERVIEW

In this section, we provide a high-level overview of how data
flows through the designed neural networks and is ultimately
transformed into the proximity metric. We also provide a
detailed explanation of how the transfer learning framework
enables the model to adapt from the source domain to the
target domain.

Acted as a device proximity estimation system based on
wireless signals, RF-Prox integrates two pivotal components:
the Multi-Resolution Spatio-Temporal Encoder (MRSTE) and
the Proximity Metric Adaptation Network (PMAN). As de-
picted in Fig. 2, the workflow of RF-Prox initiates by capturing
the Channel State Information (CSI) from wireless links
between two distinct mobile devices. This CSI data is then
processed through the MRSTE module to extract relevant
features. The MRSTE module employs a complex-valued
neural network, incorporating residual convolution blocks to
derive multi-resolution latent representations from CSI’s real
and imaginary components. Following this, a complex-to-
real transformation is performed, converting these complex
representations into real-valued spatial features for subsequent
analysis. The MRSTE concludes with a transformer-based
temporal module, which compresses and extracts latent tem-
poral information.

After processing through MRSTE, the domain-agnostic
spatio-temporal features are amalgamated and fed into the
PMAN module’s fully connected layers for a comprehen-
sive analysis and comparison. The proximity metric between

1Our project is available here.

two devices is then determined using cosine similarity, after
transformation by an elaborately designed proximity mapping
function.

RF-Prox adopts a transfer learning framework, initiating
with a model pre-trained in a source domain, which can then
be directly applied and fine-tuned within a target domain
as necessary, where the source and target domains differ in
environments and AP/BS deployments. Our transfer strategy
relies on the assumption that similar CSI distributions cor-
respond to proximate distances within a scene, which holds
across all scenarios and is crucial for the effectiveness of
transfer learning in RF-Prox. During the pre-training phase,
a substantial dataset from the source domain DS is utilized to
enhance the model’s ability to generalize and extract domain-
independent features. After pre-training, the model can be fine-
tuned using only a minimal dataset from the target domain
DT, with MRSTE parameters kept frozen while only the
parameters of PMAN are optimized. By leveraging the transfer
learning mechanism, RF-Prox can be efficiently adapted to
new environments, facilitating its practical deployment in
varied scenarios.

III. MULTI-RESOLUTION SPATIO-TEMPORAL ENCODER

In this section, we introduce the Multi-Resolution Spatio-
Temporal Encoder (MRSTE), designed to extract the domain-
independent spatio-temporal information embedded in the CSI.
As depicted in Fig. 3, MRSTE takes the complex-valued
CSI tensor as input and transforms it into multi-resolution
latent spaces via paralleled residual convolution blocks. Latent
representations with different resolutions are then fused by
channel concatenation. After passing through a fully connected
layer, the fused complex-valued representation is converted to
a real-valued spatial feature. The converted spatial features
of a time-series are then sent to the Transformer block for
temporal feature extraction, which could be further used for
robust device proximity estimation.

Compared to geometric-based algorithms [6], [9], the
MRSTE adopts a data-driven approach, analyzing signal sta-
tistical information in high-dimensional space. This approach
significantly enhances the efficacy of the system in diverse
settings, including both indoor and outdoor environments, par-
ticularly in scenarios afflicted by Non-Line-of-Sight (NLoS)
conditions.

A. CSI Preliminary
Considering the phenomenon of multipath propagation, the

wireless channel can be modeled as a function of frequency
f and time t, expressed as

H(f, t) =

L∑
l=1

αl(t, f)e
−j2πfτl(t), (1)

where L denotes the number of multipath components, αl(t, f)
embodies the complex attenuation factor, and τl(t) the propa-
gation delay corresponding to the l-th path, respectively. CSI
represents a discretized sampling of the channel response [16],
with frequency domain samples positioned on specific OFDM
subcarriers, time domain samples corresponding to each re-
ceived packet, and spatial domain samples for each radio chain
(i.e., Tx-Rx pair), rendering CSI a complex-valued tensor

https://github.com/gaoyc01/RF-Prox.git
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H ∈ CT×S×A, with T , S, and A indicating the number of
time samples, subcarriers, and radio chains, respectively.

B. Complex-valued Network for CSI Processing

Previous studies have often utilized processed CSI data,
such as the short-time Fourier transform and ToF-AoA spec-
trogram [17], [18], as inputs to classification network models
for learning, or have divided the CSI into its real and imaginary
components for independent processing within deep neural
networks [19]. Conversely, our approach leverages the raw,
unmodified CSI to mine richer spatio-temporal information.
Therefore, we embrace the concept of the complex-valued
neural network, incorporating novel elements such as complex-
valued linear and convolutional layers into the MRSTE.

To start with, a linear transformation for a CSI matrix H =
Hr + jHi with complex-valued weight W = Wr + jWi can
be decomposed into several real-valued transformations:

Linear(H;W) =

[
ℜ(WH)
ℑ(WH)

]
=

[
Wr −Wi

Wr Wi

] [
Hr

Hi

]
.

(2)
Similarly, given a complex kernel C = Cr + jCi, the
convolution operation C ∗H on the complex domain can also
be equivalently written into the following form:

Conv(H;C) =

[
ℜ(C ∗H)
ℑ(C ∗H)

]
=

[
Cr −Ci

Cr Ci

]
∗
[
Hr

Hi

]
. (3)

Research has affirmed [20] the feasibility of implementing
dropout, batch normalization, and activation mechanisms di-
rectly within the complex domain by independently manip-
ulating the real and imaginary components of the input.
This approach ensures that each complex module within the
MRSTE is a synthesis of operations conducted in the real
domain, thereby preserving the differentiability across the
entirety of the MRSTE module. Additionally, complex-valued
neural networks differ from real-valued neural networks in
terms of computational overhead. In complex-valued neural
networks, the parameter count is twice that of a real-valued
neural network since each complex parameter consists of a real
part and an imaginary part. As shown in Eq. (2) and Eq. (3),
complex multiplication is equivalent to four real multiplica-
tions and two real additions, resulting in a computational load
four times greater than that of a real-valued neural network.

C. Multi-Resolution Feature Extraction

The core design of MRSTE is the principle of fusing
CSI features across multiple resolutions, a strategy that has
demonstrated its efficacy within the domain of computer
vision [21]. The underlying logic behind this methodology is
that variations in antenna spacing, when measuring the Angle-
of-Arrival (AoA) from CSI, can introduce a balance between
resolution and the operational range [22].

Fig. 3 showcases the MRSTE’s structure, which includes
four residual convolution blocks, each characterized by unique
output channels, kernel dimensions, and stride lengths, thereby
forging four concurrent processing pathways. Let us represent
a residual block as ResBlock(·) and define Ci as the parameter
set corresponding to the i-th residual block. For an input
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Fig. 3. Illustration of Multi-Resolution Spatio-Temporal Encoder.

CSI tensor H, the output feature from the i-th block can be
articulated as

Si = ResBlock(H;Ci), i = 0, 1, 2, 3, (4)

where the residual block is basically a convolution with
shortcut connection [23], which makes the model easier to
train by solving the gradient disappearance problem during
the training for better expressive ability.

ResBlock(H;Ci) = BatchNorm(Conv(H;Ci)) +H. (5)

Features extracted from parallel residual blocks are then con-
catenated along the channel dimension and fuse into a latent
representation S = Concat(S0,S1,S2,S3). The concatenated
S contains multi-level features of the CSI input, which greatly
improves the receptive field of MRSTE and thus enhances the
generalization performance of RF-Prox.

D. Complex-to-Real Transformation
After processing CSI with paralleled residual blocks, multi-

level features can be extracted. In order to transform the
complex-valued latent representation S to the real-valued
spatial feature XS ∈ RT×H , where H is hidden dimension, we
design a complex-to-real transformation module C2R, which
applies two linear operations on the real and imaginary part:

XS = C2R(S;WR,WI)

= PReLU(Linear(ℜ(S),WR) + Linear(ℑ(S),WI)),
(6)

where WR and WI are the real-valued linear weights. Note
that for better expressive ability of the model, the PReLU
activation function is leveraged to add non-linear factors to
the features:

Y = PReLU(X) =

{
X , if X ≥ 0,

θX, if X < 0,
(7)

where θ is a learnable parameter.
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E. Transformer-based Temporal Encoder
Through the complex-to-real transformation module C2R,

a time-series of real-valued spatial features are extracted. In
order to extract the temporal features carried by the device
as it moves, we use the transformer encoder module with the
attention mechanism [24]. We first embed the series of XS into
a high-dimensional representation XE = FC(XS) with fully
connected layers FC(·). To introduce temporal information,
we use absolute positional encoding for XE to get embedded
positional information P, with each element as follows:

P(pos, 2i) = sin
(
pos/100002i/d

)
,

P(pos, 2i+ 1) = cos
(
pos/100002i/d

)
,

(8)

where pos represents the sequence element’s ordinal position,
and i refers to the dimension index within the embedding
space. Then, we formulate the transformer’s encoded input
as XPE = XE +P.

In order to better learn the relationships between the ele-
ments inside the sequence, we use the attention mechanism
to linearly transform the input XPE into queries, keys and
values:

Q = XPEWQ,

K = XPEWK,

V = XPEWV,

(9)

where WQ, WK and WV are the weight matrices used for
linear transformation. Attention features XA are obtained as

XA = Attention(Q,K,V)

= softmax

(
QKT

√
dk

)
V,

(10)

where dk is the dimension of keys.
After residual connection and layer normalization, the

spatio-temporal features XST in the CSI can be finally ex-
tracted as

XST = LayerNorm(XA +XPE), (11)

which encapsulates the spatio-temporal relationship between
the device and the access point. Thus, the spatio-temporal
features corresponding to two different terminal devices can
be further utilized to determine their proximity relationship,
which will be detailed in Section IV.

IV. PROXIMITY METRIC ADAPTATION NETWORK

A. Metric Network Design
In this section, we introduce the Proximity Metric Adapta-

tion Network (PMAN). As illustrated in Fig. 4, PMAN trans-
forms the spatio-temporal features extracted from two wireless
devices XST to their proximity metric with domain adaptation
capability. Serving as a proximity comparing network, PMAN
determines device proximity at the feature level, leveraging
the powerful nonlinear fitting capabilities of neural networks.
Compared to traditional methods that rely on determining
physical coordinates, PMAN is more effective in mitigating
the adverse effects of non-line-of-sight (NLOS) conditions.
PMAN is implemented based on the fully connected layers,
cosine similarity and an elaborately designed proximity loss
function LP(·). When being deployed in a new environment
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Fig. 4. An overview of the Proximity Metric Adaptation Network.

with different landscapes, building structures and device de-
ployment, the PMAN learns the appropriate transformation
and adapts to the new environment with only a small amount
of fine-tuning data.

The PMAN takes the spatio-temporal features from two
wireless devices as inputs, which are denoted as XA

ST and
XB

ST respectively. Two features first pass through the fully
connected layers FC(·) to get the latent representation for
cosine similarity calculation Ô:

Ô =
FC(XA

ST) · FC(XB
ST)

max
(∥∥FC(XA

ST)
∥∥
2
·
∥∥FC(XB

ST)
∥∥
2
, ϵ
) , (12)

where ϵ is a small value to avoid division by zero.
In environments where indoor or complex outdoor condi-

tions prevail, the use of Euclidean distance for quantifying
device proximity may not accurately reflect the perceived
nearness due to potential obstructions such as walls and
buildings. Consequently, our system adopts the Shortest Non-
Blocking Distance (SNBD) as the ground truth label, which
represents the minimum path length between wireless devices
that does not intersect any physical barriers. Therefore, during
the training phase, the model inputs CSI as the raw feature
and uses SNBD as the ground truth label. The definition of
SNBD assists in aligning the proximity metric more closely
with user perception. To optimize model learning during the
backpropagation phase, we introduce a novel proximity loss
function, LP(·). This function is computed using a batch of
predicted proximity outputs, Ô, and the corresponding SNBD
values, d.

LP(Ô,d) = LMSE(Ô, p(d)) =
1

N
∥Ô− p(d)∥22, (13)

where LMSE(·) indicates the mean square error, N is the batch
size and p(d) = tanh(−log(αd)), where α is the elastic
parameter to control the distribution and the steepness of the
function p(·).

The proximity estimation mechanism within our system is
designed to be more sensitive to devices in closer proximity
than those further away. Our evaluations indicate that, within
indoor settings, relevant proximity distances typically span
from 0 to 4 meters. Outdoor scenarios, however, present a
more variable range of interest. The model’s focus is modu-
lated by an elasticity parameter, α, which adjusts according to
the environmental context. For instance, within indoor settings,
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Fig. 5 demonstrates how different α values influence the
mapping function, p(·), and its derivative, p′(·). An α value
of 0.5 is chosen to ensure a steep gradient in the function
between 0 and 4 meters, with a plateau beyond this range,
thereby optimizing the model for indoor applications.

To sum up, the mapping function p(·) guides the model to
pay more attention to the distance range of interest, helping
PMAN converge quickly and perform better.

B. Transfer Learning
Our goal is to develop a full-scenario proximity detection

system for various wireless signals. However, in some complex
scenarios, data acquisition becomes very difficult and con-
sumes a lot of manpower and resources. In order to solve this
problem, we propose a pre-training and fine-tuning strategy to
fill the performance gap from the source domain to the target
domain, based on the assumption that similar CSI distributions
correspond to proximate distances within a scene, which holds
across all scenarios and is crucial for the effectiveness of
transfer learning in RF-Prox. This strategy has been proven
to greatly enhance the model’s domain adaptation capability.

Pre-training in source domain. We build both indoor en-
vironments and outdoor scenarios on MATLAB for integrated
sensing and communication based on the ray tracing model
and collect labeled CSI data under thousands of different de-
ployment cases. pre-training with a large amount of collected
data from the source domain helps the MRSTE module learn
domain generalized spatio-temporal features without overfit-
ting specific structures. During the pre-training process, all
the parameters in RF-Prox are jointly optimized. Suppose our
pre-training model is MP. Denote the source domain dataset
as DS, and the set of parameter in MRSTE and PMAN as ΘM

and ΘP respectively, the optimization (a.k.a backpropagation)
process can be written as

{ΘM,ΘP} = argmin
{ΘM,ΘP}

∑
(H,d)∼DS

1

|DS|
LP(MP(H; ΘM,ΘP),d).

(14)
Fine-tuning for real-world application. The pre-trained

model based on the source domain data has a certain gen-
eralization capability for domain transfer. To achieve better
transfer performance from source domain to target domain,
a small amount of target domain data is collected to fine-
tune the pre-trained model. During the fine-tuning process, the
parameters of the MRSTE are frozen and only the parameters

of the PMAN are optimized. The optimization process can be
written as

ΘP = argmin
ΘP

∑
(H,d)∼DT

1

|DT|
LP(MF(H; ΘM,ΘP),d),

(15)
where MF refers to the fine-tuning model, and DT indicates
the target domain dataset.

Upon completion of the pre-training and fine-tuning pro-
cesses, we get a pre-trained model MP with high generaliz-
ability, and a fine-tuned model MP which adapts to a specific
target domain environment.

V. EVALUATION

A. Experimental Methodology

1) Experimental Scenarios: To rigorously assess the per-
formance of RF-Prox, we conducted comprehensive evalua-
tions through two distinct case studies focused on proximity
detection: one within indoor settings involving UEs and IoT
devices utilizing Wi-Fi signals, and the other in outdoor UAV
scenarios leveraging cellular signals.

For these studies, we constructed source domains employing
the MATLAB Communication Toolbox and the Deep MIMO
toolkit [25], where different domains represent varying scene
setups, device placement configurations, and other environ-
mental factors. Specifically, this construction involved setting
more than 30 distinct environments, each featuring 300 var-
ied access point/base station (AP/BS) deployment scenarios.
Within each scenario, over 20 UEs/UAVs were maneuvered
across various locations and orientations to gather a com-
prehensive dataset of temporal Channel State Information
(CSI) for pre-training. For the evaluation within the target
domain, we generated novel scenarios with differing AP/BS
configurations, where 3-10 UEs/UAVs at varying locations
were permitted to move, thereby enabling the collection of
corresponding CSI data.

2) System Implementation: Within Wi-Fi-enabled indoor
settings, RF-Prox is configured with one AP and multiple
client devices operating at 5.6 GHz, where both the transmitter
and receiver are outfitted with three antennas each, spaced at
λ/2, thereby forming a 3 × 3 antenna array. Conversely, for
cellular-based outdoor scenarios, RF-Prox encompasses one
BS and multiple UAVs operating at 200 GHz, with the BS
equipped with a 4×4 antenna array (spaced at λ/2) and UAVs
equipped with a single antenna, culminating in a 1× 16 array
configuration. The target domain’s evaluation was conducted
under scenarios with a Signal-to-Noise Ratio (SNR) of 30 dB.

RF-Prox employs a hybrid programming approach, utilizing
both MATLAB and Python to facilitate rapid and efficient
processing. Specifically, MATLAB is utilized for the collection
and preprocessing of CSI data, while a Python-based deep
learning model is leveraged for real-time proximity estimation.

3) Comparative Methods: To thoroughly benchmark RF-
Prox’s efficacy, we juxtaposed it against two state-of-the-
art Wi-Fi-based localization methods: SpotFi [6] and mD-
Track [9]. This comparison was executed by substituting our
MRSTE module with each alternative, thereby highlighting the
superiority of our module design.

In scenarios featuring N+1 UEs/UAVs, with one randomly
selected as the reference, the Top-1 Accuracy metric reflects
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Fig. 6. Top-1 Accuracy and NDCG for Wi-Fi scenario.
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Fig. 7. Top-1 Accuracy and NDCG for cellular scenario.

the success rate of identifying the most proximate device
amongst the remaining N . Additionally, the NDCG [26], a
prevalent ranking metric within sorting problems ranging from
0 to 1, evaluates the accuracy of the proximity estimation
results in a ranked order.

B. Overall Performance

In this section, we investigate the comprehensive efficacy
of RF-Prox across both Wi-Fi-enabled indoor environments
and cellular-based outdoor scenarios, denoted as W and C,
respectively. The performance of the system is examined using
both a pre-trained model (PT) and a fine-tuned model (FT).

1) Top-1 accuracy: As depicted in Fig. 6 and Fig. 7,
the mean accuracy and its variability are illustrated by dots
and shaded regions, respectively. The performance of RF-
Prox in terms of Top-1 accuracy is represented by blue lines,
with dashed lines highlighting enhancements post fine-tuning.
Initially, accuracy for the pre-trained models (PT-W, PT-C)
ranges between 86.4%/81.0% and 94.3%/91.0% for categories
decreasing from nine to two, underscoring the system’s ro-
bust generalizability. After applying domain transfer learning,
the fine-tuned models (FT-W, FT-C) demonstrate improved
accuracies ranging from 94.6%/87.6% to 99.5%/93.0%, indi-
cating superior adaptation across varied categorical scenarios
and effectively bridging the source-target discrepancy through
transfer learning.

2) NDCG: The NDCG performance of RF-Prox is por-
trayed by red lines in Fig. 6 and Fig. 7, with dashed lines
denoting enhancements following fine-tuning. To assess the
system’s distance-awareness capability, a reference point is
chosen at random, and additional UEs are positioned lin-
early at uniform intervals. The pre-trained models (PT-W,
PT-C) achieve NDCG scores ranging from 0.932/0.937 to
0.972/0.955 for categories decreasing from nine to two, high-
lighting the system’s generalizability. After domain transfer
learning, the fine-tuned models (FT-W, FT-C) attain NDCG
scores between 0.939/0.951 and 0.997/0.965, showcasing the
system’s potent distance-awareness and the successful mitiga-
tion of the source-target gap via transfer learning.

3) System latency & model parameters: Utilizing the Py-
Torch Profiler, we assessed the computational demands, in-
cluding the floating point operations (FLOPs), model parame-
ters, and inference timing for each component, as documented
in Table I. Remarkably, the total number of model parameters
is lower than that of typically employed small-scale models
(e.g., ResNet-18 [23]), suggesting significant potential for

direct deployment on various edge-embedded devices for real-
time inference. Additionally, the PMAN’s notably smaller
parameter count compared to the MRSTE emphasizes efficient
fine-tuning and domain adaptation with minimal data volume.

4) Scalability analysis: Scalability refers to a model’s
ability to improve performance with increasing size, which
is crucial for setting appropriate parameter quantities based
on performance requirements. Benefiting from the complex-
domain neural network integrating MRSTE and PMAN, RF-
Prox effectively processes both the amplitude and phase in-
formation of complex-valued CSI signals, allowing it to better
capture hidden spatio-temporal features. This design enables
the model to leverage increased parameters when handling
large datasets.

To verify the scalability of RF-Prox, we trained 9 models
of different sizes, exploring different numbers of residual
convolution blocks (2C, 4C, 6C) and transformer blocks
(2T, 4T, 6T). As shown in Fig. 8 and Fig. 9, the average
inference time across all model sizes is kept within 20 ms,
enabling at least 50 operations per second, thereby meeting
real-time requirements. When deploying smaller models, RF-
Prox significantly reduces inference time while maintaining
satisfactory performance. For instance, in the cellular-based
scenario, the ‘2C2T’ model, with approximately 100K pa-
rameters, achieves nearly 86% proximity estimation accuracy
while reducing inference time to 6 ms, making it suitable for
embedded systems. Conversely, scaling up model parameters
and increasing model computation can enhance accuracy but
inevitably increases inference time, which may be preferable
in scenarios with lower real-time requirements.

5) Comparison with localization methods: To validate
the robustness and expressiveness of the high-order spatio-
temporal features extracted by MRSTE, we compared its per-
formance to that achieved using multipath AoA and ToF data
processed by SpotFi and mD-Track. As depicted in Fig. 10,
the pre-trained RF-Prox model surpasses both mD-Track and
SpotFi in accuracy and NDCG within Wi-Fi-based indoor
and cellular-based outdoor scenarios, with respective gains
of 9.0%/0.033 and 15.0%/0.057 for indoor, and 8.3%/0.036
and 14.1%/0.062 for outdoor scenarios. These improvements
underscore the advanced capabilities of MRSTE in leveraging
high-order spatio-temporal features for superior performance,
particularly when deployed in NLOS environments or trans-
ferred to new settings. This highlights how RF-Prox not
only achieves high proximity estimation accuracy but also
outperforms traditional localization-based methods in terms of
practicality and scalability.
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Fig. 8. Scalability analysis for Wi-Fi scenario.
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Fig. 9. Scalability analysis for cellular scenario.
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Fig. 12. Comparison of fusion methods.

We analyze that MRSTE can extract generalizable features
across different environments due to the consistent relationship
between similar CSI distributions and proximate distances
within a scene. This principle allows the MRSTE module to
maintain consistent feature extraction across diverse environ-
ments. It’s important to note that the reported performances
are averaged across various common category numbers, main-
taining consistency in reporting metrics across the following
sections.

TABLE I
SYSTEM LATENCY & NUMBER OF MODEL PARAMETERS.

Parameters
Multi-resolution
Spatio-Temporal

Encoder

Proximity Metric
Adaptation
Network

Overall

FLOPs (M) 26.12 0.2 26.32
Model Parameters (k) 280.73 18.58 299.31
Inference Time (ms) 13.67 0.13 13.8

C. Component Study
In this section, we undertake a component study to evaluate

the significance of each module within RF-Prox.
1) MRSTE: The core of RF-Prox comprises two main

components: a CNN-based multi-resolution spatial feature
extraction module and a transformer-based temporal feature
processing module. The spatial features are derived from
varying numbers of antennas and subcarriers, while temporal
features are extracted from device motion. As illustrated in
Fig. 11, RF-Prox demonstrates superior performance over both
MRSE and Transformer across all metrics in both indoor
and outdoor scenarios. This underscores RF-Prox’s efficacy
in integrating the strengths of both components to enhance
spatio-temporal feature extraction, thereby boosting overall
performance.

2) PMAN: Within the PMAN module, we explore two
fusion methods applied to pairs of Channel State Information
(CSI): cosine similarity and CSI concatenation followed by
Multi-Layer Perceptron (MLP) processing. As depicted in
Fig. 12, the cosine similarity approach consistently outper-
forms the CSI concatenation approach in all evaluated metrics
within both environments. This discrepancy is attributed to the
fact that concatenating CSIs introduces superfluous sequential
data, whereas CSI pairs are inherently unordered and indepen-
dent. Consequently, the unordered nature of cosine similarity
yields superior performance.

D. System Robustness
In this section, we evaluate the system’s robustness across

various antenna types, SNR levels, and dynamic environments
to assess their impact on overall efficacy.

1) Antenna type: To demonstrate the superior domain
adaptability of the PMAN module, especially when deploying
the RF-Prox system in scenarios with significant device het-
erogeneity, we test the impact of different types of antennas
with distinct radiation patterns on RF-Prox’s performance,
where the isotropic, dipole, patch, and monopole antennas
are selected for this evaluation. As shown in Fig. 13, differ-
ent antenna configurations result in only minor performance
degradation in zero-shot scenarios for both Wi-Fi-based indoor
and cellular-based outdoor environments, where the perfor-
mance can be effectively restored to similar levels through
fine-tuning.

We analyze that different antenna types, due to their unique
radiation patterns, affect the input system’s CSI in multipath
environments. However, the joint training of the PMAN and
the MRSTE enables the MRSTE to implicitly learn the compu-
tation of spatio-temporal features in the CSI that are indicative
of proximity. These extracted features are independent of
antenna radiation characteristics, allowing RF-Prox to easily
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Fig. 13. Performance with different antenna types.
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Fig. 14. Performance under different SNR.
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Fig. 15. Performance in dynamic environments.
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Fig. 16. Impact of distance between AP/BS and UEs/UAVs.

adapt to different antenna types, thereby addressing device
heterogeneity issues (antenna radiation characteristic hetero-
geneity). Furthermore, the PMAN’s fully connected layers can
be fine-tuned to easily learn domain-specific parameters re-
lated to antenna radiation characteristic heterogeneity, thereby
enhancing the model’s adaptive capabilities.

2) SNR: To demonstrate the robust interference resistance
of RF-Prox, we evaluate its performance under varying SNR
conditions, which can reflect signal quality. The SNR settings
are established at 15, 20, 25, 30 dB, reflective of typical condi-
tions for communication environments. As shown in Fig. 14,
the system maintains robust performance across various SNR
levels in Wi-Fi-based indoor environments. For instance, under
challenging communication conditions with an SNR of 15
dB, the system achieves an accuracy of 84.4%/98.3% and
an NDCG of 0.920/0.951 for the pre-trained and fine-tuned
models, respectively. Conversely, the complex and dynamic
nature of cellular-based outdoor environments exacerbates the
degradation of performance at lower SNRs, especially when
unmanned aerial vehicles (UAVs) are involved. revNotably,
fine-tuning enhances the model resilience in lower SNR envi-
ronments, evidencing the model’s adaptability through domain
transfer even under challenging conditions.

3) Dynamic environments: To further demonstrate the ro-
bustness of RF-Prox, we evaluate its performance under highly
dynamic environments. As shown in Fig. 15, we introduce
additional pedestrian movement and rotating fans as inter-
ference in Wi-Fi-based indoor environments. With pedestrian
movement, the system achieves an accuracy of 89.6%/98.8%
and an NDCG of 0.934/0.973 for the pre-trained and fine-tuned
models. For rotating fans, the system achieves an accuracy of
88.7%/99.3% and an NDCG of 0.947/0.978 for the respective
models. The results indicate a slight decrease in zero-shot
performance, which is easily mitigated through fine-tuning.

For cellular-based outdoor environments, we test the impact
of UAVs flying at different speeds. With a high-speed UAV
moving at 12 m/s, the zero-shot accuracy and NDCG remain
at 88.1% and 0.943, respectively, and can be fine-tuned to
an outstanding 92.7% and 0.960. The results show a minor
degradation in zero-shot performance with increasing UAV
speed, which is also easily compensated by fine-tuning. These
experiments demonstrate that the RF-Prox maintains strong
robustness in highly dynamic environments, attributed to the
MRSTE’s feature extraction module, which incorporates a
transformer-based temporal block to capture dynamic temporal
features and ensure stable performance in highly dynamic
settings.

E. Micro-benchmarks
In this section, we conduct a robustness analysis focusing on

the average distance between AP/BS and UEs/UAVs, antenna
number, and the volume of data used for fine-tuning, to assess
their impact on system efficacy.

1) Distance between AP/BS and UEs/UAVs: The indoor
Wi-Fi coverage is approximately 20 meters [27], while the
outdoor LTE coverage extends to about 500 meters [28].
Focusing on specific application scenarios, we set a distance of
4 meters for Wi-Fi and 300 meters for cellular base stations in
our experiments. As shown in Fig. 16, as the distance between
AP/BS and UEs/UAVs increases in both Wi-Fi-based indoor
environments and cellular-based outdoor scenarios, zero-shot
performance exhibits a decreasing trend. This is likely due
to the introduction of more environmental interference and
NLOS conditions before parsing the CSI. However, the fine-
tuning strategy still improves the model performance to a
satisfactory level, demonstrating RF-Prox’s excellent domain
generalization capabilities that enable the model to adapt and
perform effectively across various environments without the
need for significant retraining.
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Fig. 17. Impact of antenna number.
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Fig. 18. Impact of fine-tune data volume.

2) Antenna Number: Antenna configurations are varied as
2× 3, 3× 3, and 3× 4 arrays for indoor settings, and 1× 16,
2 × 16, or 3 × 16 for outdoor scenarios. As depicted in
Fig. 17, both accuracy and NDCG metrics exhibit an upward
trend with the increase in the number of antennas in both
scenarios. In Wi-Fi-based environments, a 3×3 array provides
satisfactory results, achieving accuracy and NDCG of 92.2% /
0.955 with the pre-trained model, and 98.6% / 0.971 post fine-
tuning. Similarly, for cellular-based environments, a 1 × 16
array also shows commendable performance, with accuracy
and NDCG of 88.9% / 0.947 (pre-trained) and 91.3% / 0.959
(fine-tuned) respectively. Although additional antennas could
potentially improve performance by providing more channel
information for enhanced multipath resolution discrimination,
the marginal gains diminish beyond a certain point. From
a practical perspective, it is prudent to balance the benefits
against the costs of using an excessive number of antennas.

3) Fine-tuning data volume: During the transfer learning
process, the fine-tuning data volume affects the model’s per-
formance in the target domain. For fine-tuning, data vol-
umes are set at 0, 25, 50, 75, 100, 125 for indoor environments
and 0, 250, 500, 750, 1000, 1250 for outdoor scenarios, with
zero data equivalent to employing the pre-trained model. As
illustrated in Fig. 18, the system exhibits substantial per-
formance improvements with minimal fine-tuning data. The
performance plateau observed at 125 data points indoors and
1250 outdoors suggests scenario-specific data requirements
for optimal performance, influenced by device mobility and
environmental complexity. The findings affirm the PMAN’s
robust adaptability across various settings.

VI. RELATED WORK

This section offers an insightful summary of the research
landscape surrounding our work.

Wireless-based Localization Techniques. Cellular net-
works support a wide range of positioning methods. For
outdoor scenarios, the Cell ID (CID) method [29] leverages
the cellular network’s awareness of the user equipment’s
(UE) serving cell to provide basic location insights, albeit
with constrained accuracy. Observed Time Difference Of Ar-
rival (OTDOA) [30], [31] employs multilateration, estimating
positions through the Time of Arrival (ToA) from several
base stations. This technique, reliant on base station in-
frastructure, exhibits efficacy predominantly in Line-Of-Sight
(LOS) situations. Assisted Global Navigation Satellite System
(AGNSS) [32] utilizes satellite signal measurements retrieved
by systems such as Galileo (Europe) and GPS (US) with high

accuracy (i.e. few meters), but AGNSS can be compromised
by extreme weather conditions which disrupt satellite signal
communication with ground devices [2].

Indoor localization solutions exploit various channel at-
tributes, such as Angle of Arrival (AoA) [6], Time of Flight
(ToF) [7], and their fusion [9], [33], [34], achieving excellent
centimeter-level accuracy in Line-of-Sight (LOS) scenarios.
However, these approaches are prone to significant errors
in Non-Line-of-Sight (NLoS) settings. Wireless fingerprint-
ing techniques [11]–[13] achieve finer accuracy by matching
signal features against a pre-compiled database, where radio-
assisted LiDAR SLAM [13] improves accuracy and speed
significantly by integrating radio fingerprints with LiDAR for
mapping. However, the adaptability of wireless fingerprinting
techniques is limited.

In recent years, combining deep learning with domain
adaptation [35]–[37] has been shown to significantly enhance a
system’s ability to adapt to varying environments. For instance,
Fidora [36] proposes a Wi-Fi-based indoor localization system
that leverages domain adaptation to localize different users
with minimal labeled data. Similarly, DAFI [37] introduces
a domain adaptation technique that addresses the challenge
of fingerprint inconsistency caused by small environmental
changes. However, these methods still face limitations in
generalizing to highly dynamic or diverse environments, where
substantial changes in indoor layouts or user behavior can
lead to a degradation in accuracy. Additionally, several studies
have focused on improving localization accuracy in Non-Line-
of-Sight (NLOS) conditions [38], [39], but the improvements
remain limited when compared to ideal line-of-sight (LOS)
conditions.

In summary, traditional device localization methods exhibit
significant limitations in terms of practicality and scalability,
making them unsuitable for the task of proximity estimation.
Prior research primarily focused on pinpointing the location
of individual devices, whereas RF-Prox innovatively facilitates
proximity assessments between two indirectly connected de-
vices for the first time. This novel capability sets our approach
apart from traditional localization methods and demonstrates
its potential for applications such as proximity-based services
in IoT, UAVs, and beyond.

Deep Learning in Wireless Sensing. Deep learning ar-
chitectures have been extensively applied across a variety of
wireless sensing tasks, including gesture [17], [40]–[44] and
gait recognition [45]–[49], respiration monitoring [50]–[54],
fall detection [55]–[60], tracking [9], [61]–[65], and depth
estimation [66]. Acted as a pioneering work in the emerging
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task of proximity estimation for non-directly connected wire-
less devices, RF-Prox is pivotal for a range of applications,
including implicit control of IoT devices and proximity-based
unmanned aerial vehicle (UAV) scheduling [4]. Recent inno-
vations have incorporated advanced deep learning concepts
such as adversarial [67], meta-learning [19], and generative
model [68]. By incorporating data augmentation based on
generative models like RF-Diffusion, RF-Prox holds promise
for further performance improvement. Contrary to the conven-
tional reliance on time-frequency spectrograms as inputs [69],
RF-Prox represents a pioneering approach by utilizing end-
to-end complex-valued neural networks for wireless sensing
applications, further enhanced by a transfer learning frame-
work to excel in domain generalization.

VII. DISCUSSION AND FUTURE WORK

A. Application Potential

RF-Prox’s ability to estimate proximity between non-
connected devices opens promising applications in various
industries. In smart cities [70], [71], RF-Prox could enhance
public safety, pedestrian monitoring, and transportation flow
by enabling communication and distance measurement be-
tween non-connected devices in real-time. In autonomous
vehicles, proximity estimation between non-connected devices
(e.g., vehicles and infrastructure) could support vehicle-to-
infrastructure (V2I) systems [72], [73] for safer navigation,
particularly in crowded or low-visibility environments. Ad-
ditionally, industries like healthcare [74] and industrial au-
tomation [75], [76] could leverage RF-Prox to monitor device
interactions in environments where direct connectivity may
be challenging. For example, in healthcare, RF-Prox could
support non-invasive patient monitoring by assessing the prox-
imity between wearable devices, medical instruments, and staff
devices.

Further adaptation and fine-tuning would be necessary to
optimize RF-Prox for healthcare and industrial automation.
Specific adjustments could include incorporating customized
transfer learning to handle strict privacy constraints in health-
care and reducing latency for fast-response automation in
industrial environments. Additionally, these applications could
benefit from further refinement in handling dynamic envi-
ronments and various proximity thresholds to suit specific
industry needs.

B. Emerging Wireless Technologies

With the rapid advancement of wireless communication,
there are significant opportunities to expand RF-Prox’s ca-
pabilities by integrating it with emerging technologies such
as 5G, 6G [77], and Wi-Fi 6/7. For instance, integrating
with 6G networks would enhance RF-Prox’s ability to han-
dle high-density environments and high-frequency commu-
nications, crucial for smart cities and autonomous systems.
Newer wireless technologies also introduce ultra-reliable low-
latency communication (URLLC) [77], which could further
reduce response times, making RF-Prox suitable for real-time
proximity detection in more demanding applications.

Future research will focus on extending RF-Prox to support
6G standards and explore domain adaptation improvements
to streamline deployment in varied environments without

large-scale data collection. Additionally, enhancing domain
adaptation efficiency, possibly through self-supervised learning
techniques [78], could reduce the dependence on extensive
labeled data during fine-tuning, making RF-Prox more efficient
for applications across different domains.

VIII. CONCLUSION

This paper introduces RF-Prox, a novel system designed for
the proximity estimation of non-directly connected devices,
marking a significant innovation in this domain. Utilizing
a sophisticated Multi-Resolution Spatio-Temporal Encoder
(MRSTE), RF-Prox is capable of extracting domain-agnostic
spatio-temporal features from wireless signals. These features
are then processed through the Proximity Metric Adapta-
tion Network (PMAN), which converts the extracted latent
representations into a set of proximity metrics specifically
tailored to the target domain. We implement and evaluate RF-
Prox on both Wi-Fi-based indoor environments and cellular-
based outdoor scenarios. Our results demonstrate that through
the incorporation of a transfer learning mechanism, RF-Prox
efficiently leverages extensive source domain data to learn
generalized representations. Moreover, it exhibits remarkable
adaptability to new target domains with minimal fine-tuning
data. As the inaugural system of its kind, RF-Prox represents a
pivotal breakthrough in the proximity estimation landscape for
non-directly connected devices, offering substantial potential
for future applications and research.

ACKNOWLEDGMENT

This work is supported by the NSFC under grant No.
62402276, 62372265, 62271081.

REFERENCES

[1] K. Qian, C. Wu, Z. Yang, Y. Liu, and K. Jamieson, “Widar: Decimeter-
level passive tracking via velocity monitoring with commodity wi-fi,” in
Proceedings of the ACM MobiHoc, 2017.

[2] “Chapter 23 - extreme ionospheric storms and their effects on gps
systems,” in Extreme Events in Geospace, N. Buzulukova, Ed., 2018.

[3] A. Bensky, Wireless positioning technologies and applications, 2016.
[4] Y. Gao, H. Feng, J. Chen, J. Li, and Z. Wei, “A scalable distributed

control algorithm for bearing-only passive uav formation maintenance,”
Sensors, 2023.

[5] J. Xiong and K. Jamieson, “Arraytrack: a fine-grained indoor location
system,” in Proceedings of the USENIX NSDI, 2013.

[6] M. Kotaru, K. Joshi, D. Bharadia, and S. Katti, “Spotfi: Decimeter level
localization using wifi,” in Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication, 2015.

[7] D. Vasisht, S. Kumar, and D. Katabi, “Decimeter-level localization with
a single wifi access point,” in 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16), 2016.

[8] E. Soltanaghaei et al., “Multipath triangulation: Decimeter-level wifi lo-
calization and orientation with a single unaided receiver,” in Proceedings
of the ACM MobiSys, 2018.

[9] Y. Xie, J. Xiong, M. Li, and K. Jamieson, “md-track: Leveraging multi-
dimensionality for passive indoor wi-fi tracking,” in Proceedings of the
ACM MobiCom, 2019.

[10] G. Chi, Z. Yang, J. Xu, C. Wu, J. Zhang, J. Liang, and Y. Liu, “Wi-
drone: wi-fi-based 6-dof tracking for indoor drone flight control,” in
Proceedings of the ACM MobiSys, 2022.

[11] Z. Yang, C. Wu, and Y. Liu, “Locating in fingerprint space: wireless
indoor localization with little human intervention,” in Proceedings of
the ACM MobiCom, 2012.

[12] D. Li, J. Xu, Z. Yang, Y. Lu, Q. Zhang, and X. Zhang, “Train once, locate
anytime for anyone: Adversarial learning based wireless localization,”
in Proceedings of the IEEE INFOCOM, 2021.

[13] R. Liu, B. P. L. Lau, K. Ismail, A. Chathuranga, C. Yuen, S. X. Yang,
Y. L. Guan, S. Mao, and U.-X. Tan, “Exploiting radio fingerprints for
simultaneous localization and mapping,” IEEE Pervasive Computing,
2023.



12

[14] J. Shi, M. Sha, and X. Peng, “Adapting wireless mesh network con-
figuration from simulation to reality via deep learning based domain
adaptation,” in Proceedings of the USENIX NSDI, 2021.

[15] Y. Gao, G. Chi, G. Zhang, and Z. Yang, “Wi-prox: Proximity estimation
of non-directly connected devices via sim2real transfer learning,” in
GLOBECOM 2023 - 2023 IEEE Global Communications Conference,
2023.

[16] Z. Yang, Z. Zhou, and Y. Liu, “From rssi to csi: Indoor localization via
channel response,” ACM Computing Surveys (CSUR), 2013.

[17] Y. Zhang, Y. Zheng, K. Qian, G. Zhang, Y. Liu, C. Wu, and Z. Yang,
“Widar3. 0: Zero-effort cross-domain gesture recognition with wi-fi,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

[18] R. Song, D. Zhang, Z. Wu, C. Yu, C. Xie, S. Yang, Y. Hu, and
Y. Chen, “Rf-url: unsupervised representation learning for rf sensing,”
in Proceedings of the ACM MobiCom, 2022.

[19] S. Ding, Z. Chen, T. Zheng, and J. Luo, “Rf-net: A unified meta-
learning framework for rf-enabled one-shot human activity recognition,”
in Proceedings of the ACM SenSys, 2020.

[20] C. Trabelsi, O. Bilaniuk, Y. Zhang, D. Serdyuk, S. Subramanian,
J. F. Santos, S. Mehri, N. Rostamzadeh, Y. Bengio, and C. J. Pal,
“Deep complex networks,” in International Conference on Learning
Representations, 2018.

[21] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,”
in Proceedings of the AAAI conference on artificial intelligence, 2017.

[22] J. Wang, D. Vasisht, and D. Katabi, “Rf-idraw: Virtual touch screen in
the air using rf signals,” ACM SIGCOMM Computer Communication
Review, 2014.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016.

[24] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, 2017.

[25] A. Alkhateeb, “DeepMIMO: A generic deep learning dataset for mil-
limeter wave and massive MIMO applications,” in Proc. of Information
Theory and Applications Workshop (ITA), 2019.

[26] Y. Wang, L. Wang, Y. Li, D. He, and T.-Y. Liu, “A theoretical analysis of
ndcg type ranking measures,” in Conference on learning theory, 2013.

[27] M. E. Berezin, F. Rousseau, and A. Duda, “Citywide mobile internet
access using dense urban wifi coverage,” 2012.

[28] R. S. Hassan, T. Rahman, and A. Abdulrahman, “Lte coverage network
planning and comparison with different propagation models,” Telkom-
nika (Telecommunication Computing Electronics and Control), 2014.

[29] S. M. Razavi, F. Gunnarsson, H. Rydén, Å. Busin, X. Lin, X. Zhang,
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