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Abstract—Recent years have witnessed an increasing num-
ber of mobile devices, posing a more diversified demand for
device localization solutions. While existing wireless localization
solutions can obtain the relative locations of connected devices,
they fall short in estimating the spatial relationships between
devices that are not directly connected. To address this technical
gap, we propose Wi-Prox, the first proximity estimation system
for non-directly connected devices. Wi-Prox evaluates the spatial
proximity of two devices by analyzing their received wireless
signals. It integrates a novel multi-resolution spatial encoder
that extracts multi-scale spatial features from complex-valued
wireless signals, which are then analyzed and transformed into
a domain-adaptive proximity metric. To enhance the general-
izability of Wi-Prox, we adopt a simulation-to-reality transfer
learning framework. Wi-Prox is pre-trained with a large amount
of simulated data and then fine-tuned for real-world deployment,
significantly reducing the need for real-world data collection.
We implement Wi-Prox and evaluate its performance in both
simulated and real environments. Our results indicate that a
fine-tuned Wi-Prox achieves an average accuracy of 97.2% in
selecting the most proximate device. Even without fine-tuning, a
pre-trained Wi-Prox still manages an average accuracy of 93.8%,
thereby demonstrating impressive performance in terms of both
proximity estimation accuracy and domain generalizability.

I. INTRODUCTION

Location awareness is a key enabler for a wide range of
applications such as smart homes, augmented reality, and
security monitoring [1]. With the increasing number of mo-
bile devices, extensive research efforts have been devoted to
wireless-based localization, which infers the devices’ relative
locations from ubiquitous radio signals.

Existing wireless localization solutions are designed for
devices with a direct communication link, such as wireless
access point (AP) and user equipment (UE). Unfortunately,
there is no effective wireless-based solution to obtain spatial
relationships between non-directly connected terminals (e.g.,
UE and IoT devices). And this capability, as shown in Fig. 1,
is fundamental for many novel applications, such as implicit
control of IoT devices and proximity-based user discovery.

One straightforward approach is to estimate the location
of each device independently, and then infer their relative
proximity from these location estimates. However, geometric-
based solutions relying on the channel parameters, such as
angle-of-arrival (AoA) [2], [3], time-of-flight (ToF) [4], [5],
and their fusion [6], [7], yield significant localization errors
in non-line-of-sight (NLoS) environments. Alternatively, the
fingerprint-based localization method requires collecting a
large amount of labeled data and suffers from severe gen-
eralization problems for cross-domain application [8], [9].

(a) Implicit control of IoT device (b) Proximity-based user discovery
Fig. 1. Illustration of two application scenarios of Wi-Prox.

Different from the traditional device localization ap-
proaches, we draw our inspiration from the concept of “esti-
mating by comparing,” based on the observation that wireless
devices in close proximity exhibit similar signal propagation
processes. By analyzing and comparing the spatial features
implied in the received signal of two devices, their proximity
can be inferred. However, translating this intuitive idea into
a practical system poses significant challenges. First, accurate
extraction of spatial features is difficult as traditional geometric
features like AoA and ToF suffer from intolerable errors in
non-line-of-sight (NLoS) conditions [7]. Second, formulating
a domain-adaptive proximity metric is crucial because signal
propagation characteristics can vary due to different indoor
layouts and device deployments, leading to variations in the
proximity metrics.

To overcome the above challenges, we propose Wi-Prox, the
first proximity estimation system for wireless devices that are
not directly connected. To extract accurate spatial features,
we adopt a data-driven approach and design a complex-
valued neural network module called Multi-Resolution Spa-
tial Encoder (MRSE). The MRSE is capable of extracting
multi-scale latent representations from the wireless signal
and fusing them into a feature vector that represents the
spatial characteristics of the wireless channel. To formulate
a domain-adaptive proximity metric, we construct a Proximity
Metric Adaptation Network (PMAN) that compares the spatial
features of two wireless channels and evaluates the devices’
proximity with domain adaptation capability. In Wi-Prox, we
leverage a simulation-to-reality (Sim2Real) transfer learning
mechanism [10], which allows us to pre-train the model
using simulated data and then fine-tune it with a minimal
amount of real-world data. This approach significantly reduces
the need for real-world data collection, while ensuring its
generalization capability. We implement Wi-Prox and evaluate
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Fig. 2. An overview of the Wi-Prox, where solid and dashed lines represent data collection from simulated and real-world environments, respectively, with
blue and orange used to distinguish devices.

its performance across more than 3,000 domains in both
simulated environments and real-world scenarios. During the
evaluation process, over 7,700,000 data samples are collected.
The results show that a fine-tuned Wi-Prox achieves an average
accuracy of 97.2% in selecting the most proximate device,
and even a pre-trained model without fine-tuning achieves an
average of 93.8% accuracy, demonstrating its impressive per-
formance in both proximity estimation accuracy and domain
generalizability.

We summarize our contributions as follows: 1) We pro-
pose Wi-Prox, the first proximity estimation system for
non-directly connected wireless devices. Wi-Prox shows the
domain-adaptive capability and can be easily deployed in
any real-world environment, making a promising step towards
integrated sensing and communication. 2) Our proposed Multi-
Resolution Spatial Encoder is a pioneering attempt at applying
complex-valued neural networks to wireless sensing. The
multi-resolution design has its unique advantages and can also
be integrated into other types of wireless sensing applications.
3) The simulation-to-reality transfer learning adopted by our
system has been proven effective, providing a new approach
to enhance the generalizability of data-driven wireless sys-
tems. 4) We implement and evaluate Wi-Prox on commercial
hardware, which showcases the practicality and effectiveness
of deploying Wi-Prox in real-world scenarios. Our work will
be open-sourced after acceptance to facilitate the research
community.

The rest of this paper is organized as follows. We first
present the overview of Wi-Prox in Section II, followed by
the detailed design of the MRSE in Section III and PMAN
in Section IV. Our implementation and evaluation of Wi-Prox
are shown in Section V, and the conclusion in Section VI.

II. SYSTEM OVERVIEW

Wi-Prox is a device proximity estimation system based on
the wireless signal, which consists of two key components:
Multi-Resolution Spatial Encoder (MRSE) and Proximity Met-
ric Adaptation Network (PMAN). As illustrated in Fig. 2, the
process of Wi-Prox begins by extracting the channel state
information (CSI) of wireless links corresponding to two
different mobile devices. The collected CSI tensors are then
fed into the MRSE module for feature extraction. MRSE

is a complex-valued neural network composed of residual
convolution blocks designed to extract multi-resolution latent
representations from both the real and imaginary parts of the
CSI. Subsequently, a complex-to-real transformation is applied
to convert the complex-valued representation to a real-valued
spatial feature for further analysis. Once encoded with MRSE,
the domain-independent spatial features are concatenated and
subsequently passed through fully connected layers of the
PMAN module for joint analysis and comparison. After being
transformed by an elaborately designed proximity mapping
function, the output proximity metric of two devices can be
obtained.

Wi-Prox employs a simulation-to-reality transfer learning
framework, whereby the model is initially pre-trained in
a simulated environment. This pre-trained model can be
directly deployed in real-world settings and fine-tuned as
needed. During pre-training, a large amount of data generated
from a simulated data domain DS are leveraged to enhance
the model’s generalization capability in extracting domain-
independent features. Following pre-training, the model is fine-
tuned with only a small amount of real-world data from DR.
By leveraging this approach, Wi-Prox can be easily adapted to
new scenarios for practical application.

III. MULTI-RESOLUTION SPATIAL ENCODER

In this section, we introduce the Multi-Resolution Spatial
Encoder (MRSE), designed to extract the domain-independent
spatial information embedded in the CSI. As illustrated in Fig.
3, MRSE takes the complex-valued CSI tensor as input and
transforms it into multi-resolution latent spaces via paralleled
residual convolution blocks. Latent representations with dif-
ferent resolutions are then fused by channel concatenation.
After passing through a fully connected layer, the fused
complex-valued representation is converted to a real-valued
spatial feature, which could be further used for robust device
proximity estimation.

Compared with geometric-based algorithms [3], [6], our
proposed MRSE leverage a data-driven approach, analyzing
signal statistical information in high-dimensional space. This
strategy enhances system performance in complex indoor
scenarios, particularly under NLoS conditions.
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Fig. 3. Illustration of Multi-Resolution Spatial Encoder.

A. CSI Preliminary

Taking multipath propagation into account, the wireless
channel can be formulated by frequency f and time t as:

H(f, t) =

L∑
l=1

αl(t, f)e
−j2πfτl(t), (1)

where L represents the number of multipath components.
αl(t, f) and τk(t) are the complex attenuation factor and prop-
agation delay for the l-th path respectively. CSI is a discretely
sampled version of channel response [11]. In the frequency
domain, CSI is sampled on certain OFDM subcarriers, in the
time domain, CSI is measured for each received packet, while
in the spatial domain, CSI can be measured on each radio chain
(i.e., Tx-Rx pair). Therefore, CSI is generally considered as a
complex-valued tensor H ∈ CT×S×A, where T , S, A are the
number of time samples, subcarriers and radio chains.

B. Complex-valued Network for CSI Processing

Previous researches usually take the pre-processing results
of CSI, such as short-time Fourier transform and ToF-AoA
spectrogram [12], [13]) as the input of a classification network
model for learning, or split the original CSI into real and
imaginary parts [14] for separate processing within a deep
neural network. In contrast, the raw CSI as a whole can be
used as input to extract richer spatial information. Therefore,
we exploit the idea of the complex-valued neural network and
integrate several innovative components including complex-
valued linear layers and complex-valued convolutional layers
into our proposed MRSE.

To start with, a linear transformation for a CSI matrix H =
Hr + jHi with complex-valued weight W = Wr + jWi can
be decomposed into several real-valued transformations:

Linear(H;W) =

[
ℜ(WH)
ℑ(WH)

]
=

[
Wr −Wi

Wr Wi

] [
Hr

Hi

]
.

(2)

Similarly, given a complex kernel C = Cr + jCi, the
convolution operation C ∗H on the complex domain can also
be equivalently written into the following form:

Conv(H;C) =

[
ℜ(C ∗H)
ℑ(C ∗H)

]
=

[
Cr −Ci

Cr Ci

]
∗
[
Hr

Hi

]
. (3)

Research has demonstrated [15] that dropout, batch normal-
ization, and activation operations can be directly applied in
the complex domain by individually manipulating the real
and imaginary components of the input. In this way, each
complex module in MRSE is a linear combination of real
domain operations, which guarantees the differentiability of
the entire MRSE module.

C. Multi-Resolution Feature Extraction

The core design of MRSE is to fuse CSI features from
multiple scales, which has been proven effective in the field
of computer vision [16]. One intuitive explanation for the
rationale behind this design is that angle-of-arrival (AoA) mea-
surement from CSI obtained using different antenna spacing
can form a trade-off between resolution and range [17].

As illustrated in Fig. 3, MRSE comprises four residual
convolution blocks, each with distinct output channels, kernel
sizes, and strides, thus establishing four parallel paths. Denote
the residual block as ResBlock(·), and let Ci be the set of
parameters of the i-th residual block. Given the input CSI
tensor H, the feature extracted from the i-th block can be
written as:

Vi = ResBlock(H;Ci), i = 0, 1, 2, 3, (4)

where the residual block is basically a convolution with
shortcut connection [18], which makes the model easier to
train by solving the gradient disappearance problem during
the training for better expressive ability:

ResBlock(H;Ci) = BatchNorm(Conv(H;Ci)) +H. (5)

Features extracted from parallel residual blocks are then con-
catenated along the channel dimension and fuse to a latent rep-
resentation Z = Concat(V0,V1,V2,V3). The concatenated
Z contains multi-level features of the CSI input, which greatly
improves the receptive field of MRSE and thus enhances the
generalization performance of Wi-Prox.

D. Complex-to-Real Transformation

After processing CSI with paralleled residual blocks, multi-
level features can be extracted. In order to transform the
complex-valued latent representation Z to the real-valued
spatial feature S, we design a complex-to-real transformation
module C2R, which applies two linear operations on the real
and imaginary part:

S = C2R(Z;WR,WI)

= PReLU(Linear(ℜ(Z),WR) + Linear(ℑ(Z),WI)),
(6)

where WR and WI are the real-valued linear weights.
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Fig. 4. An overview of the Proximity Metric Adaptation Network.

IV. PROXIMITY METRIC ADAPTATION NETWORK

In this section, we introduce the Proximity Metric Adap-
tation Network (PMAN). As illustrated in Fig. 4, PMAN
transforms the spatial features extracted from two wireless
devices S to their proximity metric with domain adaptation
capability. PMAN is implemented based on the fully connected
layers and an elaborately designed proximity loss function
LP (·). When being deployed in a new environment with dif-
ferent building structures and device deployment, the PMAN
learns the appropriate transformation and adapts to the new
environment with only a small amount of fine-tuning data.

A. Metric Network Design

The PMAN takes the spatial features from two wireless
devices as inputs, which are denoted as SA and SB re-
spectively. Two features are first concatenated into S′ =
Concat(SA,SB), and then put into the fully connected layers
FC(·) to get the proximity estimation ô = FC(S′; ΘFC),
where ΘFC is the set of parameters of fully connected layers.

In typical indoor environments, using Euclidean distance
to describe the proximity of two devices may not be a wise
choice, since two devices with close Euclidean distance may
be blocked by obstacles (e.g., the walls). This is not in
accordance with the proximity of the user perception. As
such, we define the ground truth label in our system as
the Shortest Non-Blocking Distance (SNBD), signifying the
minimal path length between wireless devices that does not
traverse any obstacles. To enable the model to learn more
effective parameters during the backpropagation process, we
designed a novel proximity loss function LP (·). Given a batch
of proximity output Ô and corresponding SNBD d, the loss
can calculated as:

LP (Ô,d) = LMSE(Ô, p(d)) =
1

N
∥Ô− p(d)∥22, (7)

where LMSE(·) indicates the mean square error, N is the
batch size and p(d) = tanh(−log(αd)), where α is the
elastic parameter to control the distribution and steepness of
the function p(·).

In proximity estimation, the system should exhibit greater
sensitivity to nearby devices as opposed to distant ones,
considering that device proximity distance typically ranges
from 0 to 4 m based on our comprehensive evaluation. The
elastic parameter α governs the model’s distance of interest.
Figure 5 illustrates the variation in the mapping function p(·)
and its derivative p′(·) with different values of α. We select
α = 0.5 to ensure that p(·) exhibits a sharp gradient from 0

0 2 4 6 8 10
SNBD (m)
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Fig. 5. Illustration of the proximity mapping function varied by α.

to 4 m and a flat gradient at longer distances, thus adapting
the model to indoor environments.

To sum up, the mapping function p(·) guides the model to
pay more attention to the distance range of interest, helping
PMAN converge quickly and perform better.

B. Sim2Real Transfer Learning

Our goal is to develop a proximity estimator for real-world
applications. However, collecting large amounts of CSI data
in the real world is a laborious task, and simulated data,
while easily accessible, may not maximize the real-world
performance of our system. Therefore, we propose a pre-
training and fine-tuning strategy from simulation to reality to
enhance the model’s domain adaptation capability.

Pre-training in simulated environments. We build a sim-
ulation environment for integrated sensing and communication
based on the ray tracing model and collected labeled CSI data
under tens of different indoor building structures. pre-training
with a large amount of simulated data helps the MSRE module
to learn domain generalized spatial features without overfitting
specific indoor structures. During the pre-training process, all
the parameters in Wi-Prox are jointly optimized. Suppose our
pre-training model is MP . Denote the simulated data domain
as DS , and the set of parameter in MRSE and PMAN as ΘM

and ΘP respectively, the optimization (a.k.a backpropagation)
process can be written as:

{ΘM,ΘP} = argmin
{ΘM,ΘP}

∑
(H,d)∼DS

1

|DS |
LP (MP (H; ΘM,ΘP), d).

(8)
Fine-tuning for real-world application. The pre-trained

model based on the simulation data has a certain generalization
capability. In order to achieve better real-world performance,
a small amount of real-world data are collected to fine-tune
the pre-trained model. During the fine-tuning process, the
parameters of the MRSE are frozen and only the parameters
of the PMAN are optimized. the optimization process can be
written as:

ΘP = argmin
ΘP

∑
(H,d)∼DR

1

|DR|
LP (MF (H; ΘM,ΘP), d), (9)

where MF refers to the fine-tuning model, and DR indicates
the real-world data domain.

Upon completion of the pre-training and fine-tuning pro-
cesses, we get a pre-trained model MP with high generaliz-
ability, and a fine-tuned model MP which adapts to a specific
real environment.

2023 IEEE Global Communications Conference: Selected Areas in Communications: Integrated Sensing and Communication

5632
Authorized licensed use limited to: Tsinghua University. Downloaded on September 02,2024 at 02:54:19 UTC from IEEE Xplore.  Restrictions apply. 



5 4 3 2Category Num
85.0%

90.0%

95.0%

100.0%

Ac
cu

ra
cy

PT-S
FT-S

PT-R
FT-R

Fig. 6. Top-1 Accuracy for N Category

5 4 3 2Category Num
0.80

0.85

0.90

0.95

1.00

ND
CG

PT-S
FT-S

PT-R
FT-R

Fig. 7. NDCG for N-device sorting

2x2 2x3 3x3Antenna Num
70.0%

80.0%

90.0%

100.0%

Ac
cu

ra
cy

0.7

0.8

0.9

1.0

ND
CG

PT Acc
FT Acc

PT NDCG
FT NDCG

Fig. 8. Performance with different antenna number

V. EVALUATION

A. Experimental Methodology

1) Experimental Scenarios: In order to fully evaluate the
performance of Wi-Prox, we set two kinds of experimental
environments: a simulation environment and a real-world
environment. We build a simulation environment based on
the MATLAB Communication Toolbox. During the simulation
process, more than 30 different indoor environments are set,
each with 100 different AP deployment scenarios. In each
deployment case, 3-6 UEs are randomly placed in different
locations to collect CSI data. For the real-world evaluation, the
system is deployed in an office building with 3 different AP
deployments. In each deployment case, 3-6 UEs are allowed
to move within the given range and the corresponding CSI can
be acquired in real time. The devices’ ground-truth locations
are obtained in real time through surveillance cameras.

2) System Implementation: Wi-Prox consists of 1 AP and
multiple clients working at 5.6 GHz. Both the transmitter and
the receiver are equipped with 3 antennas with a spacing
of λ/4, forming into a maximum of 3 × 3 MIMO array.
For real-world evaluation, we fully implement Wi-Prox with
commercial Wi-Fi NICs AR9580. Wi-Prox utilizes a hybrid
programming approach in MATLAB and Python to enable
fast and efficient processing. Specifically, MATLAB is used
for collecting CSI data from either the simulation environment
or the real-world platform. The collected CSI data is instantly
streamed to the server, where the deep learning model built
with Python is deployed, making predictions in real time.

3) Comparative Methods: To extensively evaluate the per-
formance of Wi-Prox, we implement two state-of-the-art Wi-
Fi-based localization approaches for comparison. We compare
our Wi-Prox with SpotFi [3] and mD-Track [6] by replacing
our MRSE module with each of these approaches to demon-
strate the superiority of our module design.

4) Evaluation Metrics: Suppose there are N+1 UEs in the
experimental scenario, where we randomly choose one as the
reference and estimate its proximity with the rest of N devices,
Top-1 Accuracy indicates the success rate of selecting the
most proximate device. Normalized Discounted Cumulative
Gain (NDCG) [19] is a common ranking metric in sorting
problems ranging from 0 to 1, which is used to evaluate the
sorted proximity estimation result.

B. Overall Performance

In this section, we evaluate the overall performance of Wi-
Prox. Denote the evaluation under a new virtual simulated
environment and a new real-world environment as ‘S’ and ‘R’

and set the pre-trained model and fine-tuned model as ‘PT’
and ‘FT’ respectively.

1) Top-1 accuracy: Fig. 6 depicts the performance of the
Wi-Prox, where the dashed box indicates the performance im-
provement after fine-tuning. As shown, the pre-trained model
(‘PT-R’, ‘PT-S’) achieves accuracy from 89.5% / 90.7% to
97.1% / 97.5% with categories from 5 to 2, respectively,
which shows good generalizability of the system. After fine-
tuning, the average Top-1 accuracy exceeds 95.0% for all
categories, demonstrating that the system is able to handle
different numbers of categories in common scenarios with
good adaptation capability, where the simulation-to-reality gap
is well bridged by the sim2real transfer learning strategy.

2) NDCG: We set the reference point and other N UEs on
a line. As shown in Fig. 7, the NDCG with the pre-trained
model (‘PT-R’, ‘PT-S’) varies from 0.815 / 0.838 to 0.968 /
0.988 with categories from 5 to 2, while the fine-tuned model
shows good performance with over 0.844 for all categories,
manifesting its good spatial distance perception ability.

3) System latency & model parameters: We employ the
PyTorch Profiler to count the number of floating point opera-
tions (FLOPs), model parameters, and inference time of each
component. The data is shown in Table I. It’s noted that the
overall number of model parameters is smaller than commonly
used small-scale models (e.g. ResNet-18 [18]), which shows
that the model has great potential to be deployed directly
on various edge-embedded devices and realize real-time in-
ference. Besides, the extremely small number of parameters
in the PMAN compared to the MRSE enables minimal data
volume fine-tuning and domain adaptation.

TABLE I
SYSTEM LATENCY & NUMBER OF MODEL PARAMETERS

Parameters Multi-resolution
CSI Encoder

Adative Metric
Network Overall

FLOPs (k) 35220.4 3.726 35224.1
Model Parameters (k) 82.56 3.818 86.38
Inference Time (ms) 2.18 0.11 2.29

C. Micro-benchmarks

In this section, we set the category number to 3 and
implement robustness analysis for antenna number, SNR, CSI-
based feature extraction models (e.g. MRSE), and fine-tuning
data volume to evaluate their impact on system performance.

1) Antenna Number: We configure the antenna size as a
2 × 2, 2 × 3, or 3 × 3 MIMO array. Fig. 8 indicates a
slight increase in both accuracy and NDCG as the number of
antennas increases. For a 3 × 3 MIMO array, the pre-trained
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model achieves accuracy and NDCG of 95.6% and 0.909,
respectively, while the fine-tuned model reaches 98.9% and
0.919. We anticipate further improvement in performance with
more antennas because more channel information provided
indirectly enhances the capacity for multipath resolution dis-
crimination, which benefits the extraction of potential spatial
features.

2) SNR: We set SNR as {15, 20, 25, 30, 35} dB, which
is typical in indoor environments [20]. In Fig. 9, the mean
and standard deviation are represented by dots and color
blocks respectively. The results demonstrate that the system
can perform well in different common indoor SNRs. For
example, when SNR is 25, the accuracy reaches 94.9±2.8%
/ 98.8±0.6% and NDCG 0.907±0.007 / 0.907±0.003 under
pre-trained and fine-tuned model respectively.

3) Effectiveness of MRSE: To verify the robustness and
expressiveness of the high-order spatial features extracted by
MRSE, we replaced that with the multipath AoA and ToF
acquired by SpotFi and mD-Track to train models. As shown
in Fig. 10, with the mere pre-trained model, MRSE outper-
forms mD-Track and SpotFi on both accuracy and NDCG,
achieving improvements of 13.0% / 0.075 and 23.0% / 0.091,
respectively.

4) Fine-tuning data volume: We set data volume as
{0, 50, 100, 150}. It is worth noting that data amounts being
0 is equivalent to using the pre-trained model. As shown
in Fig. 11, the system can achieve good performance given
only a small amount of data to fine-tune. When fine-tuning
data amounts reach 150, the model achieves 97.8±0.5 and
0.913±0.003 on both accuracy and NDCG, which demon-
strates the good adaptive capability of the PMAN.

VI. CONCLUSION

This paper proposes the design and implementation of Wi-
Prox, a proximity estimation system for non-directly con-
nected devices. Wi-Prox utilizes a complex-valued Multi-
Resolution Spatial Encoder (MRSE) to extract domain-
independent spatial features and leverages the Proximity Met-
ric Adaption Network (PMAN) to transform spatial features
into proximity metrics. By employing Sim2Real transfer learn-
ing, Wi-Prox learns generalized representations in the simu-
lated environment and adapts to specific real-world environ-
ments using only a minimal amount of fine-tuning data.
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