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Abstract— Recent years have witnessed an increasing demand
for human fall detection systems. Among all existing methods,
Wi-Fi-based fall detection has become one of the most promising
solutions due to its pervasiveness. However, when applied to a new
domain, existing Wi-Fi-based solutions suffer from severe perfor-
mance degradation caused by low generalizability. In this paper,
we propose XFall, a domain-adaptive fall detection system based
on Wi-Fi. XFall overcomes the generalization problem from three
aspects. To advance cross-environment sensing, XFall exploits an
environment-independent feature called speed distribution pro-
file, which is irrelevant to indoor layout and device deployment.
To ensure sensitivity across all fall types, an attention-based
encoder is designed to extract the general fall representation
by associating both the spatial and temporal dimensions of the
input. To train a large model with limited amounts of Wi-Fi
data, we design a cross-modal learning framework, adopting
a pre-trained visual model for supervision during the training
process. We implement and evaluate XFall on one of the latest
commercial wireless products through a year-long deployment in
real-world settings. The result shows XFall achieves an overall
accuracy of 96.8%, with a miss alarm rate of 3.1% and a false
alarm rate of 3.3%, outperforming the state-of-the-art solutions
in both in-domain and cross-domain evaluation.

Index Terms— Domain adaptation, fall detection, statistical
electric field, transformer encoder, cross-modal supervision.

I. INTRODUCTION

HUMAN falls constitute a major public health issue.
An estimated 684,000 fatal falls occur each year, making

it the second leading cause of unintentional injury death
worldwide [1]. During the past decade, extensive research
efforts have been devoted to preventing death and injury
caused by accidental falls.

Despite the proliferation of fall detection solutions, includ-
ing vision-based systems, wearable devices, and sensor-based
approaches, each of these methods comes with its set of
limitations. Vision-based systems [2], [3], [4], for example,
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are hampered by privacy concerns and the inherent limitations
of camera field-of-view (FoV), rendering them ineffective in
non-line-of-sight (NLoS) conditions. Wearable devices [5], [6],
although innovative, often suffer from user acceptance issues
due to their intrusive nature. On the other hand, solutions
that rely on advanced radar [7] and acoustic sensors [8] face
significant cost barriers, hindering their widespread adoption.
This background highlights the urgent need for a fall detection
method that is widespread, secure, and non-intrusive, filling
the essential gaps present in today’s indoor fall detection
solutions.

Over the past decades, Wi-Fi infrastructures have been
widely deployed. As a pervasive wireless signal filling out our
indoor spaces, Wi-Fi has been leveraged to build various types
of contactless sensing systems [9], [10], [11], [12], [13]. While
initial studies [14], [15], [16] have highlighted the capability
of Wi-Fi channel state information (CSI) for fall detection,
a significant challenge of these existing approaches is their
lack of adaptability to environments beyond those in which
they were initially trained. This limitation in cross-domain
generalization limits their practical deployment. To build a
one-fits-all Wi-Fi-based fall detection system, which is able
to train once, use anywhere, we face three major challenges.

Challenge 1: How to extract the environment-
independent feature. Previous Wi-Fi-based fall detection
systems leverage either primitive features such as the raw CSI
amplitude and phase [14], [17], or the spectrogram feature
like doppler frequency spectrogram (DFS) [15] and discrete
wavelet transformation (DWT) spectrogram [18] generated
from the CSI. Unfortunately, due to the multipath effect, the
raw CSI patterns vary significantly across different indoor
structures, which obscure the characteristic caused by human
activity. Although both DFS and DWT reflect the environment
dynamics independent from the indoor structure, they highly
rely on the device deployment and user’s location [19]. To con-
clude, none of the above-mentioned features can directly adapt
to a different environment.

Challenge 2: How to design a model for learning general
human fall representation. Human fall is a complex activity,
and different fall types induce specific signal disturbances
over time and space. Existing solutions resort to either clas-
sic machine learning models like support vector machine
(SVM) [15], or deep neural networks such as multi-layer per-
ception (MLP) and convolutional neural network (CNN) [7].
However, neither of them explores the association between
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the spatial and the temporal dimensions of the input feature.
For example, some people may hold on the furniture or lean
against the wall as they fall, which might not induce significant
signal fluctuations. And these types of human fall activity are
usually difficult to detect by existing models.

Challenge 3: How to train a large model with lim-
ited Wi-Fi data. To achieve system generalizability, it is
imperative to employ a deep neural network model with tens
of millions of parameters. Such models necessitate extensive
labeled Wi-Fi sensing data for training. Unfortunately, the
collection and labeling of Wi-Fi datasets are notably labor-
intensive. Particularly, on-line labeling1 is essential for Wi-Fi
sensing data, as these data types are not interpretable by human
observation [20]. Therefore, collecting enough labeled Wi-Fi
data for training poses a significant challenge.

To tackle the above challenges, we design and implement
XFall, a domain-adaptive fall detection system based on Wi-
Fi. To derive an environment-independent wireless feature,
we dig deeper into the fundamental principles of electromag-
netic field propagation. Inspired by statistical electromagnetic
field theory, we construct a wireless feature called speed
distribution profile (SDP), which can adapt to different envi-
ronments accommodating differences in indoor structures,
device deployment, and user locations. To exploit the general
representation of human fall, we design a spatial-temporal-
attention-based transformer encoder (STATE), which learns the
associations and dependencies across the spatial and temporal
dimensions of the input feature, and thus characterizes contin-
uous activity at a higher level of abstraction. To train a large
model with the limited amount of labeled data, we design
a cross-model unified feature learning (CURL) framework,
which adopts the idea of knowledge distillation [21]. With
the CURL framework, a vision-based fall detection network
is adopted to supervise the training process, which effectively
reduces the demand on labeled Wi-Fi data.

We implement XFall on a commercial Wi-Fi product,
Huawei AX3 Pro, and perform a year-long evaluation across
70 different real-world settings, including diverse indoor lay-
outs, AP deployments, and user locations. We also compare
XFall with three state-of-the-art Wi-Fi-based fall detection sys-
tems, including DeFall [16], TLFall [18], and FallDeFi [15].
The evaluation result shows that XFall achieves an average
miss alarm rate (MAR) and false alarm rate (FAR) of 3.1%
and 3.3% respectively, with an overall accuracy of 96.8%,
surpassing DeFall, TLFall, FallDeFi by 14.5%, 22.3%, and
23.1% respectively, thereby demonstrating XFall’s superior
performance for real-world application.

Our contributions are summarized as follows:
• We propose XFall, the first domain-adaptive fall detection

system based on Wi-Fi. Our proposed design enables
XFall to adapt to different environments (with different
indoor layouts, AP deployments, and user locations) and
keep sensitive to all human fall types, making a promising
step towards practical and ubiquitous Wi-Fi sensing.

• Both the environment-independent feature and the
spatio-temporal encoder proposed in XFall have their

1On-line labeling entails labeling data concurrently with its collection.

unique advantages. They can be directly applied to
other types of Wi-Fi sensing applications (e.g., human
gesture recognition, gait recognition) to improve their
generalizability.

• Our proposed CURL framework effectively reduces the
need of labeled Wi-Fi data, which provides few-shot-
learning capability to Wi-Fi-based sensing systems.

• We implement and evaluate XFall on AX3 Pro, which is
a pioneer attempt to build up a real-world wireless sens-
ing application based on the latest commercial wireless
product supporting 802.11ax (Wi-Fi 6) standard.

The rest of this paper is organized as follows. We begin
by reviewing the related work in Section II, and provide an
overview of XFall in Section III, followed by detailed design
of the speed distribution profile (SDP) in Section IV, the
spatio-temperal attention-based encoder (STATE) in Section V,
and the cross-modal unified representation learning (CURL)
framework in Section VI. Our implementation and evaluation
of XFall is shown in Section VII, followed by the conclusion
in Section VIII.

II. RELATED WORK

This section briefly summarizes the most related works in
the following categories.

A. CSI-Based Fall Detection

The utilization of Channel State Information (CSI) has
been a focal point in Wi-Fi sensing applications, particularly
for fall detection, showcasing the potential of commercial
devices in capturing intricate movement patterns. WiFall [14]
achieves fall detection based on CSI amplitude. On this basis,
RTFall [17] extracts both CSI amplitude and phase differences
between different antennas to detect fall events. FallDeFi [15]
adopts time-frequency analysis on CSI amplitude and presents
a sequential forward selection algorithm to single out the fea-
tures that are resilient to environmental changes. TLFall [18]
extracts DWT profiles and applies transfer learning to reduce
the impact of different environments. DeFall [16] is a pioneer-
ing work that extracts environment-independent speed features
for fall detection without intensive training. FallViewer [22]
proposes a series of CSI calibration algorithms to reduce
the component of environments and improve the impact of
fall activities. The above-mentioned works acquire several
statistical characteristics from the features and discriminate
fall activities by classical machine learning algorithms, such
as SVM classifiers and random forest algorithms. Despite their
contributions, the quest for a system that adapts seamlessly
across different environments without the need for recon-
figuration underscores our research motivation. In contrast
to the above methods, our system, XFall, introduces SDP,
a feature agnostic to domain variations such as environment
and deployment diversities. This innovation enables XFall to
robustly withstand the challenges posed by varying conditions.
Moreover, by employing the STATE model, XFall adeptly
identifies fall-specific high-level features, thereby enhancing
the accuracy of fall detection.
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Fig. 1. System architecture of XFall.

B. Fall Detection Based on Other Modalities

Beyond CSI, fall detection research has explored a variety of
sensing technologies, such as vision-based, wearable device-
based, and dedicated radar-based approaches. Vision-based
methods capture images and extract human movements by
different kinds of cameras, including RGB cameras, event
cameras, and depth cameras [2], [3], [4], [23]. Wearable
device-based methods usually leverage the Inertial Measure-
ment Unit (IMU), including accelerometers, gyroscopes, and
inclinometers to recognize fall events [5], [6], [24], [25],
[26]. In terms of dedicated radar-based approaches, RF-
Fall [7] extracts spatial heatmaps by Frequency Modulated
Continuous Wave (FMCW) radars and adopts CNN to cap-
ture high-level spatial features to recognize fall activities.
Acoustic-FADE [8] utilizes a circular microphone array to
recognition fall activities. Inspired by statistical wireless sens-
ing, VeCare [27] introduces statistical acoustic sensing for the
first time, which can support speed estimation using audio
signals. Our research, XFall, distinctly fills the technical gap
by introducing a ubiquitous, non-invasive detection system that
leverages pervasive Wi-Fi signals. This approach capitalizes on
the omnipresence of Wi-Fi to realize fall detection, setting our
system apart from previous endeavors by harnessing a signal
modality that is ubiquitous and seamlessly integrated into
everyday environments, thereby offering a practical solution
for fall detection.

C. CSI-Based Activity Recognition

The scope of CSI’s application extends beyond fall detec-
tion, encompassing a broad array of activities like gesture
and gait recognition, and passive human tracking. E-eyes [9]
is a pioneer work to use commercial Wi-Fi signals to dis-
tinguish in-place activities. WiFiU [28], Indotrack [29] and
Widar [30] achieve gait recognition and passive human track-
ing based on DFS profiles, respectively. WiSpeed [31] is
the first to introduce statistical EM approaches for Wi-Fi-
based speed estimation via the ACF of CSI power, which
is then extended to the ACF of CSI in GaitWay [32].
Widar3.0 [19] extracts body-coordinate velocity profile, which
captures body-coordinate velocity profiles (BVP) of human
gestures at the lower signal level. EI [33], and CrossSense [34]
incorporate adversarial networks and transfer learning models

to realize human activity sensing, respectively. SLNet [35]
proposes the first complex-valued neural network tailored
for RF signals by integrating spectrum analysis with deep
learning model in a novel co-design, which demonstrates
versatility across a wide range of wireless sensing tasks.
Recently proposed RF-Diffusion [13] successfully enhances
the accuracy and robustness of existing wireless sensing sys-
tems through data augmentation. Nevertheless, applying these
insights to fall detection demands an approach that overcomes
the environmental and situational variability inherent to real-
world applications. Our proposed XFall distinguishes itself
by extracting domain-independent features, enabling precise
detection without the need for domain-specific training, thus
broadening the horizon for fall detection technologies.

III. SYSTEM OVERVIEW

XFall is a human fall detection system based on off-the-
shelf Wi-Fi devices. As shown in Figure 1, a pair of Wi-Fi
devices are deployed around the monitoring area to capture
CSI streams. Concurrently, the system gathers visual data from
an RGB camera, facilitating the cross-modal training process.

XFall consists of three key components: the speed distribu-
tion profile (SDP) generation, the spatial-temporal-attention-
based transformer encoder (STATE) and the cross-modal
unified representation learning (CURL) framework. Once
receiving CSI series of fall activities and normal activi-
ties, XFall performs the SDP generation algorithm. XFall
establishes the statistical electric field model and calculates
the auto-correlation function of CSI data to generate the
SDP, which contains environment-independent human motion
information. The SDP series are input to the STATE, which
extracts high-level spatial features at each moment and tem-
poral features throughout the whole series. The application
of attention modules prompts the network to focus on the
spatio-temporal features corresponding to fall activities, which
advances classification accuracy. After the STATE, the general
fall representation (GFR) can be extracted from the SDP.
The CURL framework is proposed to perform cross-modal
learning during the training process, in which a pre-trained
visual model is introduced to supervise STATE.

It’s worth mentioning that the CURL framework only works
during the training process. In the testing stage, XFall works
with Wi-Fi data only and doesn’t require any visual input.
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Fig. 2. Illustration of a rich scattering environment, where the transmitted
waves are diffused by the surroundings before arriving at the receiver.

IV. SPEED DISTRIBUTION PROFILE

As demonstrated in previous researches [36], the unique
velocity distribution across all human body parts is one of the
most effective indicators for activity recognition. Among all
wireless features (e.g., attenuation, AoA, ToF), the DFS profile
contains the environment’s velocity information and is widely
used for activity recognition [37]. However, the DFS profile is
environment-dependent, which means it is highly related to the
transceiver deployment and the user’s location and orientation,
preventing it from cross-domain pervasive applications [19].

In this section, we exploit a domain-independent feature
called speed distribution profile (SDP), which adapts to
different indoor layouts, user locations, and device deploy-
ment. Fundamental theory of the statistical electric field model
(Section IV-A) is first introduced. On this basis, the formula-
tion of electric field from CSI (Section IV-B) is proposed,
followed by the calculation of SDP (Section IV-C).

A. Statistical Electric Field Model

As shown in the left part of Figure 2, most indoor spaces
can be modeled as a rich scattering environment, where the
scatterers (e.g., the human body parts, furniture, and building
walls) are assumed to be diffusive and can reflect the wireless
signals toward all directions [31]. The continuous electric
magnetic (EM) waves emitted by the transmitter (Tx) are
finally received by the receiver (Rx) after a series of scattering
processes.

Typically, in an indoor environment, the EM wave can
be fully characterized by its electric field. Therefore, let
E⃗Rx(t, f) denote the electric field received at time t with a
frequency f . To analyze the spatial dynamics of the environ-
ment, we decompose E⃗Rx(t, f) as follows:

E⃗Rx(t, f) =
∑

α∈Ωs(t)

E⃗α(t, f) +
∑

β∈Ωd(t)

E⃗β(t, f), (1)

where Ωs(t) and Ωd(t) are the set of static and dynamic
scatterers respectively.

To fully understand E⃗Rx(t, f), we dive into each component
E⃗α(t, f), which denotes the EM wave scattered by the i-th
scatterer. We notice that E⃗α(t, f) can be interpreted as an
integral of the incident (a.k.a. incoming) EM waves over all
directions, as shown in the right part of the Figure 2. For
each incident wave with elevation ϕ and azimuth θ, define its
angular spectrum as A⃗(ϕ, θ), and its wave-number vector as
k⃗ = − 2πf

c (sin(ϕ) cos(θ), sin(ϕ) sin(θ), cos(ϕ))T, where c is

the speed of light. Suppose the speed of the α-th scatterer
is v⃗α, based on the Maxwell’s equations [38], the E⃗α(t, f)
can be represented as follows:

E⃗α(t, f) =
∫ 2π

0

∫ π

0

A⃗(ϕ, θ) exp
(
−jk⃗ · v⃗αt

)
sin(ϕ)dϕdθ

(2)

where the z-axis is aligned with the moving direction of the
scatterer α. With Equation 2, we successfully bridge the gap
between the speed vα and the received electric field.

However, with no prior knowledge of the indoor structure,
the radio propagation process is generally difficult to analyze
since neither the location of each scatterer nor the value of
A⃗(ϕ, θ) can be determined. Therefore, instead of constructing
a deterministic model, we treat the indoor space as a reverber-
ation cavity [38] and build up a statistical model of EM fields.
Specifically, E⃗α(t, f) is assumed to be a superposition of a
large number of independent waves from uniformly distributed
directions with random phases and polarizations. Therefore,
the following two conclusions can be derived: 1) The angular
spectrum A⃗(ϕ, θ) is a circularly symmetric Gaussian random
variable [39]; 2) ∀α, β ∈ Ωd,∀t1, t2, the incoming EM wave
component E⃗α(t1, f) and E⃗β(t2, f) are uncorrelated.

On this basis, E⃗α(t1, f) can be approximated as a stationary
random process, with an auto-correlation function (ACF) in the
following form:

ρE⃗α
(τ, f) =

⟨E⃗α(t, f), E⃗α(t + τ, f)⟩√
∥E⃗α(t, f)∥2∥E⃗α(t + τ, f)∥2

, (3)

where ⟨·⟩ is the inner product operator, and τ is the time lag.
With detailed proof in previous studies [40], we have:

⟨E⃗α(t, f), E⃗α(t + τ, f)⟩ = E2
α(f)

sin(kvατ)
kvατ

, (4)

where we define E2
α(f) as the power of E⃗α(t, f). Therefore,

by aggregating all the independent scatter components, we get
the ACF of the received electric field:

ρE⃗Rx
(τ, f) =

1∑
β∈Ωd

E2
β(f)

∑
α∈Ωd

E2
α(f)

sin(kvατ)
kvατ

. (5)

With Equation 5, we successfully bridge the gap between
the received electric field and the environmental dynamics
(i.e., the speed vα of each scatter). In other words, by ana-
lyzing the ACF of the received electric field, we can infer the
speed distribution of the surrounding environment.

B. From CSI to Scatter Speed

One significant challenge remains to get the received electric
field from the commercial Wi-Fi device. Let X(t, f) and
Y (t, f) be the transmitted and the received signal waves of
a subcarrier with frequency f at time t. Then, we notice that
Y (t, f) = ∥E⃗Rx∥. Based on the definition of CSI, H(t, f) =
Y (t, f)/X(t, f). Similar to Equation 1, we can decompose
the CSI as follows:

H(t, f) =
∑

α∈Ωs(t)

Hα(t, f) +
∑

β∈Ωd(t)

Hβ(t, f), (6)

Authorized licensed use limited to: Tsinghua University. Downloaded on September 02,2024 at 02:49:35 UTC from IEEE Xplore.  Restrictions apply. 



CHI et al.: XFall: DOMAIN ADAPTIVE Wi-Fi-BASED FALL DETECTION 2461

where Hα(t, f) is the CSI component corresponding to the
α-th scatterer. Notice that X(t, f) is the long training field
predefined in the 802.11 protocol, and thus can be treated
as a constant. Therefore, the CSI amplitude |H(t, f)| is
proportional to the norm of the electric field:

|H(t, f)| ∝ ∥E⃗Rx(t, f)∥, |Hα(t, f)| ∝ ∥E⃗α(t, f)∥. (7)

According to the Equation 4 and Equation 5, both the covari-
ance function ⟨E⃗Rx(t, f), E⃗Rx(t + τ, f)⟩ and auto-correlation
function ρE⃗Rx

(τ, f) degenerate to a scalar independent of the
direction of the electric field vector. Therefore, we can directly
substitute Equation 7 into Equation 4 and Equation 5, and
construct the statistical relationship between CSI and the speed
distribution in the environment:

ρH(τ, f) =
cov(H(t, f), H(t + τ, f))

cov(H(t, f), H(t, f))

=
1∑

β∈Ωd
σ2

β(f)

∑
α∈Ωd

σ2
α(f)

sin(kvατ)
kvατ

=

∑
α∈Ωd

σ2
α(f) sinc(kvατ)∑

β∈Ωd
σ2

β(f)

=
∑

α∈Ωd

wαsinc(kvατ), (8)

where the function cov(·, ·) indicates the covariance of two
random variables, and σα(t, f) refers to the standard deviation
of the amplitude of the α-th CSI component |Hα(t, f)|. The
Equation 8 shows that the ACF of the CSI can be considered
as a weighted-sum of the scatterers’ speed vα after a nonlinear
filter sinc(·).

C. Generate the Speed Distribution Profile

In practice, the CSI data reported by the Wi-Fi NIC forms
into a 2-D complex matrix H ∈ CNT×NS , where NT and
NS are the number of packets and the number of subcarriers
respectively. Therein H(ti, fj) indicates a complex-valued
sample of the CSI from the i-th packet and the j-th subcarrier.

Typically, SDP S is determined by three key parameters: the
number of CSI samples NT , the time lag resolution ∆T , and
the number of lag samples N∆. Each SDP is generated from
a 3-D ACF tensor ρ ∈ RN∆×WT×NS , where each element
ρ(n, i, j) can be represented as follows:

ρ(n, i, j) = ρH(n∆T , fj)

=
|H(ti, fj)H∗(ti − n∆T , fj)|
|H(ti, fj)||H(ti − n∆T , fj)|

. (9)

On this basis, by merging all the subcarriers and performing
probabilistic normalization to each column of the ACF tensor,
the SDP S ∈ RN∆×WT is generated, with each element
S(n, i) as follows:

S(n, i) =

∑NS

j=1 ρ(n, i, j)/NS∑N∆
n=1 ρ(n, i, j)

. (10)

For ease of understanding, define a random process u(τ, v) =∑
α∈Ωd

wαsinc(kvατ) based on Equation 8. Then, as shown
in Figure 3, each column in S represents a discrete sample of
u at different τ , which contains the speed distribution of the

Fig. 3. Illustration of a speed distribution profile (SDP), with two dimensions
containing the spatial and temporal distributions of the speed, respectively.

environment. Therefore, the SDP can be treated as a matrix,
with two dimensions containing the spatial and temporal
information of the environmental dynamics, respectively.

Following our investigation, we determine that the SDP
extraction algorithm exhibits polynomial time complex-
ity. Specifically, the element-wise operations defined in
Equation 9 and 10 operate on a three-dimensional tensor,
leading to a time complexity for each operation of O(N∆ ×
WT×NS). In practice, the dimensions of this tensor tend to be
of similar scales. Therefore, the cumulative time complexity
of the SDP extraction process is approximately 2×O(N∆ ×
WT ×NS) ≈ O(N3), affirming its practical applicability for
real-world implementation.

D. Comparison With Different Features

In this subsection, to provide more intuitive explanations of
our proposed SDP and its unique advantages, we compare it
with two other distinct features, phase difference and DFS,
across various domains.

Experiments were conducted in both a living room and
a meeting room, as depicted in Figure 8. In these settings,
Wi-Fi devices record CSI measurements as a volunteer per-
forms almost identical fall activities in varying orientations
and locations. The phase difference of CSI is calculated as
described in RTFall [17], and DFS information is obtained
through STFT, following FallDeFi’s approach [15], with a
band-pass filter applied to minimize noise. Additionally, SDP
is extracted using the method outlined in Section IV-C.

Figure 4 showcases the pattern of phase difference, DFS,
and SDP features during human falls. As can be seen,
the CSI phase difference is highly sensitive to the orien-
tation, location and environment. The CSI phase difference
fluctuates drastically with the changes of domain, making
it difficult to represent human activities. The DFS profiles
exhibit different frequency shifts when the volunteer falls at
the same location (location #1) but to different orientations
(orientation #1 and #2) and the volunteer falls to the
same orientation (orientation #1) but at different locations
(location #1 and #2). The DFS profiles also demonstrate dif-
ferent modes with the changes of environment. Theoretically,
the DFS profiles can only capture the radial velocity of the
target, but has no perception ability of the tangential motion.
Therefore, the DFS profiles depend on the deployment of the
device, as well as the location and orientation of the user.
In contrast, SDP demonstrates almost consistent characteristics
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Fig. 4. Phase difference, DFS and SDP of falls in different domain settings, including different environments, locations, and orientations.

for the same fall type under different orientations, locations,
and environments, thereby showcasing its strong capability for
domain generalization.

V. SPATIAL AND TEMPORAL ATTENTION NETWORK

In XFall, the Spatio-Temporal-Attention-based Trans-
former Encoder (STATE) shown in Figure 5 is proposed
to fully exploit the general fall representation (GFR) from the
input SDP. In STATE, the transformer encoder (Section V-A)
[41] is the basic building block, which learns the associations
and dependencies of the input features. Inspired by the network
structure of the basic transformer encoder, we design the
spatial transformer encoder (Section V-B) and the tempo-
ral transformer encoder (Section V-C) for feature extraction
on each dimension of the SDP, respectively. Specifically,
in Figure 5, the SDP is first split in to WT column vectors
Si, each with a size of N∆×1, representing the spatial speed
distribution at a specific time ti. A sequence of Si is input
into different spatial encoders to extract the environment speed

information. All the encoded spatial embeddings are gathered
and treated as series data, and put into the temporal encoder.

A. Transformer Encoder

Figure 6 illustrates the general structure of a transformer
encoder block. A transformer encoder is a self-attention-
based model, which effectively extracts a high-level descrip-
tion of the input embedding like video streams and text
sequences [41]. Firstly, the linear projection and position
embedding operations are applied to the input sequence.
Then, a multi-head self-attention operation is performed to
capture the dependencies among the input patches, followed
by the fully-connected feed-forward blocks to capture the
dependencies among the input patches. It’s worth mentioning
that a residual connection followed by layer normalization is
implemented after each block, to increase the sensitivity of the
network and avoid the vanishing gradient problem [42].

Among all the blocks in the transformer encoder, the multi-
head self-attention block attempts to build the interactions of
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Fig. 5. Illustration of the spatio-temporal attention-based transformer encoder.

Fig. 6. The network architecture of the transformer encoder.

the input features at different time patches. Given the input
X ∈ RL×din , the linear projection model generates the queries
Q ∈ RL×dQ , keys K ∈ RL×dK , and values V ∈ RL×dV

respectively as follows:

Q = XW Q, K = XW K , V = XW V , (11)

where W Q ∈ Rdin×dQ , W K ∈ Rdin×dK , and W V ∈
Rdin×dV are projection parameters, and dQ = dK . The self-
attention model outputs a weighted sum of the values, where
weights are calculated by the dot-product of the query with
the corresponding key, which can be defined as:

Attention(Q, K, V ) = softmax

(
QKT

√
dK

)
V . (12)

In practice, we employ multi-head attention with h attention
heads, in which the self-attention calculation is calculated
for h times independently to capture the information from
various demonstration sub-spaces. The outputs of projections
are concatenated and projected again to obtain the final output:

MultiHead(Q, K, V ) = (a1, a2, . . . ,ah) W O, (13)

where ai = Attention
(
XW i

Q, XW i
K , XW i

V

)
, and W O ∈

RhdV ×dO is the final projection parameter. To ensure the inputs
and outputs have the same dimensions, set din = hdV .

Through the multi-head self-attention blocks, we acquire the
deep interactions of the input sequences.

B. Spatial Feature Extraction

Transformer encoder as introduced in Section V-A can
extract high-level representation for the input data. However,

applying the transformer encoder to extract spatial features
from wireless signals presents two primary challenges. The
first challenge is the substantial number of output vectors
generated by the encoder, leading to increased computational
demands. This, in turn, may result in overfitting on the
training set when used for classification tasks. Secondly, while
the transformer encoder does not necessitate specifying the
position of each patch, the sequential order of input patches in
wireless signals typically denotes the power distribution across
various spatial states, bearing significant physical implications.

To deal with the above-mentioned problems, we propose
a spatial transformer encoder based on the basic transformer
encoder by adding both the CLS token and the learnable
position embeddings.

Specifically, the spatial transformer encoder focuses on the
spatial speed distribution instead of the temporal change. The
input of each spatial transformer encoder is a column vector
Si with a size of N∆ × 1, which describes a random process
with respect to the spatial speed distribution. To accelerate
the training and inference process, each vector Si is first
reshaped to a 2-D matrix Xi ∈ RL×dS , where N∆ =
L × dS . After the reshaping, each row of Xi can be viewed
as an input patch, and there are L patches for each spatial
transformer encoder. To solve the first problem and achieve
effective learning for classification tasks, a classification token
CLS ∈ R1×dS is inserted into the beginning of embedded
patches as the representation of the entire input patches [43].
The output state of the transformer encoder of the CLS
token serves as the classification feature of the input patches.
Therefore, the final input data of a transformer encoder is
X ′

i = (CLS; Xi) ∈ R(L+1)×ds .
In addition, we add a standard learnable position embed-

dings P i ∈ R(L+1)×ds to each patch embeddings to overcome
the second problem and preserve the position information.
After the position embedding module, the input element of
each transformer encoder can be illustrated as X̃

′
i = X ′

i+P i.
Through the spatial transformer encoder, a set of high-level
features Y i ∈ R(L+1)×ds can be obtained corresponding to
the input X̃

′
i. We choose the output feature of CLS token

y0
i ∈ R1×ds as the output of the spatial transformer encoder.

The output series of all WT spatial transformer encoders are
used as the input for following temporal modeling.

For each moment, the spatial encoder focuses on the
fall-specific speed spatial distribution and pays less attention
to other speed components, since the self-attention module
can adaptively allocate different attentions to different power
distributions of the input.

C. Temporal Feature Extraction

In this subsection, we introduce the temporal encoder, which
aims to extract the temporal feature. Like the spatial feature
encoder, the temporal attention encoder also faces problems
with many output vectors and missing input patch positions.
To address the above problems, we propose the temporal
attention encoder, which pays more attention to the position
where the speed distribution fluctuates dramatically.

The input series of the temporal attention network are
the output of WT spatial transformer encoders, denoted as
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Fig. 7. The SDP and temporal attention of different fall types, including slip, trip, loss-balance, kneel-then-fall, and walk-then-fall.

y0 =
(
y0

1, y
0
2, . . . ,y

0
WT

)
∈ RWT×ds , where each ele-

ment y0
i can be viewed as the input patch and there are

WT patches for the temporal attention network. Same as
Section V-B, we add the classification token CLS and the
position embeddings to respond to the two previous problems
and convert the transformer encoder in Section V-A for tem-
poral feature extraction.

After the temporal transformer encoder, we capture the
high-level features. We extract the output feature of CLS
token z0 ∈ R1×ds as the output of the temporal transformer
encoder. Then, several fully-connected layers are applied to the
output feature z0 to achieve GFR, demonstrating the general
representation of human fall.

To demonstrate the performance of the temporal atten-
tion mechanism, a volunteer performs different fall types
(including slip, trip, lose-balance, kneel-then-fall and walk-
then-fall) under the same setting. While these activities were
performed, Wi-Fi devices collected CSI series. We extract the
SDP features as introduced in Section IV-C, and calculate the
attention weights at each moment by the temporal attention
encoder. Figure 7 shows the SDP and the attention weights at
different moments of the five fall types. As can be seen, there
are large variances among the SDP of different fall types. The
temporal attention encoder provides different attention for each
moment. During the fall process, the encoder assigns more
attention to the moment with higher speed, which is a key
element to determine whether a person falls. With the help
of the attention mechanism, the temporal encoder focuses on
the key motion during the fall process. Thus, the temporal
attention encoder captures the essential temporal information.

VI. CROSS-MODAL UNIFIED REPRESENTATION LEARNING

Our proposed STATE is an effective model to extract the
spatio-temporal representation of human activities. However,
with a large number of learnable parameters, the transformer
model usually requires a large amount of training data. Unfor-
tunately, the data collection and labeling process of Wi-Fi
datasets are labor-intensive because on-line labeling process

is necessary for the Wi-Fi sensing dataset, which is different
from image data or text data.

Inspired by knowledge distillation [21], we put forward
the Cross-modal Unified Representation Learning (CURL)
framework, which utilizes visual signals collected in synchro-
nization with Wi-Fi data to transfer the classification capacity
from the visual domain into the wireless feature domain
during the training process. The CURL framework benefits our
XFall in two aspects. First, the feature maps from the visual
classification network are leveraged to supervise the training of
STATE, which effectively reduce the demand of labeled Wi-Fi
data. Moreover, the CURL framework inspires STATE to learn
the associations between the visual representation and the Wi-
Fi feature, improving our system accuracy and speeding up
the training process.

It’s worth mentioning that the vision-based network is only
leveraged to “guide” the STATE during the training process.
Once the Wi-Fi-based STATE is trained, XFall only takes
Wi-Fi signals as the input.

A. Vision-Based Network

For effective cross-modal learning, we choose a simple-yet-
effective model called C3D [44], which is consisted of several
3D convolution layers and fully connected layers. To build up
a vision-based fall detection network, we first choose a pre-
trained C3D model, and fine-tune it based on our collected
videos of human fall and normal activities. Specifically, during
the fine-tuning process, the learnable parameters of convolu-
tion layers are frozen, and only the fully connected layers
can be adjusted. After we get a trained C3D model for fall
detection, we extract feature map r̃ from the middle part of
the fully connected layers, which will be used for the following
cross-modal learning.

B. Cross-Modal Supervision

During the training stage, the synchronized video and Wi-Fi
data are put into the CURL framework to train both the
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Fig. 8. Layouts of three evaluation environments.

STATE and the MLP. Based on [45], it will achieve better
performance to learn the feature maps of the network and the
final classification results simultaneously. Consequently, there
are two training objectives for STATE: 1) The output GFR of
STATE should match the output feature map r̃; 2) The final
fall detection result should match the ground truth.

Consequently, the loss function can be formulated into two
parts. On the one hand, we adopt the mean square error (MSE)
to evaluate the effectiveness of GFR. Assuming the GFR from
STATE and the supervision information of the visual model
for i-th sample is ri and r̃i respectively, the supervision loss
function can be defined as:

Lsv =
N∑

i=1

∥r̃i − ri∥2/N, (14)

where N is the total number of training samples.
On the other hand, we use binary cross-entropy to evaluate

the classification performance, which can be illustrated as:

Lc = −
N0∑
i=1

(Yi log P (Y ′i ) + (1− Yi) log (1− P (Y ′i ))) ,

(15)

where Yi and Y ′i are the ground truth label and predicted
label of the i-th sample. Overall, the final loss function can
be written in the following forms:

L = Lc + λLsv, (16)

where λ is a balance factor. Performing backpropagation and
optimization algorithms, the STATE and the MLP layers for
classification are trained.

VII. EVALUATION

A. Experiment Methodology

1) Implementation: We implement XFall prototype on the
commercial Wi-Fi product Huawei AX3 Pro, which supports
the latest 802.11ax standard. Both the transmitter and the
receiver work at a central frequency of 5.825 GHz. All the
transmitters and receivers are equipped with two antennas,
forming into a 2×2 MIMO array. The transmitter sends Wi-Fi

TABLE I
DETAILED EVALUATION SETUP

packets at an injection rate of 350 packets per second to extract
CSI information. The software part of XFall is implemented in
a hybrid-programming way. Specifically, we utilize MATLAB
for signal processing and SDP generation, and PyTorch for
building and training deep learning models.

2) Evaluation Setup: The configuration and methodology
of our evaluation are shown in Table I, demonstrating the
extensive efforts to reflect real-world applicability of XFall.
Our experiments span three typical indoor environments: an
office room, a living room, and a small meeting room, encom-
passing a comprehensive range of over 70 diverse domains
(e.g., varying indoor layouts, access point deployments, user
locations), as illustrated in Figure 8. This broad spectrum of
testing conditions is integral to ensuring that XFall’s evaluation
is reflective of the myriad scenarios it may encounter in
practical deployment. Specifically, in the office, we deploy the
transmitter at a fixed location, and the receiver at 16 different
locations. In the living room and meeting room, both the
transmitter and receiver are placed at given locations. For
each receiver’s deployment, we set 2-4 different locations
where the volunteer may fall. A 1080P RGB camera, operating
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Fig. 9. Overall comparison with SOTAs.

at 20 FPS, was employed alongside the CSI data acquisition,
ensuring precise synchronization of observed fall events with
the collected data.

Our experimental approach not only validates the function-
ality of XFall across a broad spectrum of real-life situations
but also highlights the system’s operational compatibility with
standard, commercially available Wi-Fi equipment. This aspect
is crucial, as XFall’s ability to function effectively with a single
Wi-Fi link aligns perfectly with most home usage scenarios.
Furthermore, the relevance and practicality of our experimental
setup and device deployment have been endorsed by wireless
device manufacturers with significant expertise in real-world
deployment, confirming the practical viability of our system.

3) Data Collection: Five volunteers with different heights
and somatotypes participate in our experiments. To capture fall
samples, we require the volunteers to accomplish fall motions
with different fall types at the given locations in Figure 8.
The volunteers are asked to perform daily movements in the
experiment scenario when obtaining normal samples. In total,
we collect over 1,000 fall samples and 2,800 normal samples
during the experiment. The types of fall samples include
slip, trip, lose-balance, kneel-then-fall, and walk-then-fall. The
normal activities include slow walking, fast walking, sitting
down, standing up, jumping, bend-and-pickup, and squatting.
All experiments are approved by our IRB.

4) Metrics: In accordance with previous researches [15],
we utilize two straightforward metrics for performance eval-
uation: the Missed Alarm Rate (MAR) and the False Alarm
Rate (FAR). The MAR, indicating the system’s sensitivity to
fall activities, is defined as the proportion of fall events that
are incorrectly undetected. Conversely, the FAR, reflecting the
system’s precision in avoiding false alerts, is the proportion of
non-fall events erroneously detected as falls.

B. Overall Performance

We compare XFall with three state-of-the-art (SOTAs)
fall detection solutions, FallDeFi [15], TLFall [18], and
DeFall [16]. FallDeFi and TLFall extract DFS and DWT
profiles, respectively, and select several statistical features for
fall detection. Then, they adopt SVM to classify falls and
normal activities. DeFall extracts speed streams from raw CSI
and classifies fall activities with a template matching method.
To compare the system performance, we split the total data
samples into train and test datasets and adopt a ten-fold cross-
validation method for evaluation. Figure 9 shows the results.
XFall achieves an overall accuracy of 96.8% with an average

Fig. 10. Cross-type comparison with SOTAs.

Fig. 11. Cross-environment comparison with SOTAs.

MAR of 3.1% and FAR of 3.3%, outperforming the state-of-
the-art works.

To evaluate the system robustness, we conduct cross-
type and cross-environment comparisons. Cross-type and
cross-environment signify that the testing sets comprise data
encompassing different fall types and environments, distinct
from those in the training set. As shown in Figure 10 and
Figure 11, XFall achieves consistent higher performance across
different domains than other existing works, demonstrating its
domain-adaptive performance.

Adhering to the industry-informed empirical benchmarks,
maintaining that MAR and FAR below 10%, especially under
cross-type and cross-environment conditions, is critical for
ensuring the practical applicability of commercial fall detec-
tion systems. Existing solutions like FallDeFi and TLFall
struggle to align with this recommendation, and DeFall’s
performance only aligns marginally under consistent condi-
tions. Our system, in contrast, successfully adheres to this
broadly-recognized guideline across various domains, under-
lining its practical utility in real-world scenarios.

Compared with XFall, FallDeFi and TLFall take SVM as the
classification model, which is much simpler than our proposed
STATE, and thus fails to fully exploit the information from the
input features. DeFall adopts an estimated speed value as the
input feature, which can demonstrate fall activities. However,
considering that speed values of various activities may be
similar, the template matching method has limitations for fall
classification. Instead, XFall extracts the speed distribution,
which describes human activities better than a single speed
value. Moreover, our adopted spatio-temporal attention-based
model also helps XFall to achieve better performance.

C. Robustness Analysis

1) Performance Across Different Fall Types: In this exper-
iment, we evaluate the performance of XFall across different
fall types. We collect fall samples with five typical fall types,
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Fig. 12. Performance across fall types.

Fig. 13. Performance across environments.

including slip, trip, lose-balance, kneel-then-fall, and walk-
then-fall, which are labeled from #1 to #5. We select data
from one fall type and part of the normal types for testing
and data of the other four fall types and the remaining normal
data for training. The results depicted in Figure 12 show that
XFall maintains consistent performance across a variety of
fall types. This demonstrates XFall’s ability to apply what it
has learned from observed falls to accurately identify falls it
hasn’t been directly trained on, markedly boosting its ability
to generalize. This makes XFall a dependable solution for real-
world application. The rational behind the delightful result lies
in two folds: 1) SDP focuses on the spatio-temporal speed
distribution rather than singular speed values, capturing a more
comprehensive pattern of various fall types instead of relying
solely on contrasting speed values; 2) Our proposed STATE
employs an attention mechanism to analyze fall activities
more thoroughly, thereby extracting more detailed, fall-specific
information. Consequently, XFall is adaptive to different fall
types.

2) Performance Across Different Environments: Assessing
the adaptability of XFall across diverse environments is criti-
cal for understanding its practical application scope. In this
experiment, we trained XFall on data collected exclusively
from environment #a, as depicted in Figure 8, and then
tested its efficacy in all three environments including two
unseen environment. The results, illustrated in Figure 13,
reveal a marginal performance variation when transitioning
across different testing environments. Remarkably, both the
Missed Alarm Rate (MAR) and False Alarm Rate (FAR)
remained approximately at 7.0%, despite the shift to novel
environments. This stability not only demonstrates XFall’s
robust cross-environment capability but also underscores its
significant generalization potential. The foundational principle
enabling XFall to maintain high performance across unfamiliar
environments lies in the design of the SDP. By focusing
on universal characteristics of human falls, independent of

Fig. 14. Performance across users.

Fig. 15. Impact of features.

environmental context, SDP effectively isolates fall recogni-
tion from environment-specific noise. Consequently, XFall,
trained in any given environment, is adept at generalizing
and accurately detecting falls in any unseen environment,
showcasing its profound adaptability and readiness for real-
world deployment.

3) Performance Across Different Users: Understanding how
XFall performs among a variety of users is vital for assessing
its practicality in real-world scenarios. This experiment aims
to test XFall’s ability to generalize fall detection capabilities
across different individuals, each with unique behavior pat-
terns and physical characteristics. We engaged five volunteers,
labeled from #1 to #5, to participate in this study. The
model was trained using data from combinations of four
users and then tested on the remaining unseen user’s data.
The strategy was designed to evaluate how well XFall could
adapt to new users it had not encountered during training.
The findings, as detailed in Figure 14, highlight that XFall
achieved an impressive consistency in its performance, with
both the Missed Alarm Rate (MAR) and False Alarm Rate
(FAR) averaging around 4.0% across different users. This
level of robustness testifies to XFall’s capacity to discern user-
independent, robust fall characteristics effectively.

D. Micro Benchmarks

1) Impact of Features: We compare four types of features
with different levels of abstraction from raw CSI measure-
ments, including denoised CSI, DFS profiles, DWT profiles,
and SDP, by feeding them into the same deep learning model
as introduced in Section V. The training and testing datasets
are both composed of samples from the three environment
settings. The evaluation results are shown in Figure 15. As can
be seen, the SDP outperforms the denoised CSI, DFS, and
DWT with an average decrease of 33.8%, 5.8%, and 8.7% in
terms of MAR+FAR. Compared with CSI, SDP digs into the
speed distribution information with physical significance by
the prior knowledge of electromagnetic fields, which makes
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Fig. 16. Impact of learning models.

Fig. 17. Effectiveness of video supervision.

the deep model easier to learn and optimize. In addition,
DFS and DWT contain information related to environments
and human activities. In contrast, SDP pays more attention
to activity-specific information, irrelevant to the environment,
location, and orientation. Consequently, SDP can achieve
better performance in practice. The result shows that SDP is
an ideal feature for fall detection.

2) Impact of Learning Models: We evaluate the effective-
ness of the proposed STATE classifier. With SDP as input,
we classify fall and normal activity with CNN, LSTM, and
STATE deep network. As shown in Figure 16, STATE out-
performs CNN and LSTM models with an average decrease
of 4.0% and 5.7% in terms of MAR+FAR. our model effec-
tively exploits the information of human activity from spatial
and temporal aspects respectively. In addition, the attention
mechanism helps to focus the significant moments and spatial
features. Thus, compared with other traditional models, our
model can tap into the information of human action, which
performs better performance.

3) Effectiveness of Video Supervision: In this experiment,
we evaluate the impact of video supervision by utilizing
different numbers of samples as the training sets and compare
the performance of the system with and without video super-
vision. We use F1-score as the evaluation metric, which is the
combined result of MAR and FAR. As illustrated in Figure 17,
the F1-score of the supervised system exceeds the one without
supervision. In other words, to achieve the same F1-score, the
former requires fewer training samples than the latter. As the
number of training samples increases, the performance gap
gradually decreases. Based on the evaluation result, we can
conclude that supervision from the visual network improves
the efficiency of the deep learning model and reduces the
amount of Wi-Fi data for training.

4) Impact of Sampling Rates: In the above experi-
ments, we evaluate XFall with the sample rate of 350 Hz.
To demonstrate the system performance with different sam-
pling rates, we downsample the CSI to different sampling rates

Fig. 18. Impact of sample rates.

Fig. 19. Impact of window size.

from 100 Hz to 300 Hz for fall detection. We also adjust
the input shape of the STATE according to different sampling
rates. The evaluation results are shown in Figure 18. As can be
seen, MAR and FAR slightly increase by 1.7% and 1.6% when
the sampling rate decreases from 350 Hz to 200 Hz; when
the sampling rate further decreases from 200 Hz to 100 Hz,
MAR and FAR increase by 2.7% and 4.0%. Theoretically, fall
movements are fast activities, which can be captured sensi-
tively by a high sampling rate. From the experimental results,
higher sampling rates can achieve better system performance.
In addition, the improvement of system performance is not
significant with the sampling rate above 200 Hz. Consequently,
we could achieve ideal performance on COTS devices without
the demand for an extremely high sampling rate.

5) Impact of Window Size: Based on empirical observation,
the duration of fall movements is around 1000 ms to 1500 ms.
In this experiment, we evaluate the impact of the window
size on the system performance. We select different time
windows of 1500 ms, 1250 ms, 1000 ms, 750 ms, and 500 ms.
The results are shown in Figure 19. MAR and FAR slightly
increase by 2.1% and 4.6% when the window size decreases
from 1500 ms to 1000 ms. However, MAR and FAR increase
by 17.9% and 10.2% when the window size further decreases
from 1000 ms to 500 ms. Theoretically, too short window sizes
would result in the incomplete capture of fall activities, leading
to system performance degradation. Results demonstrate that
we should set the window size to 1500 ms for the best
performance.

6) System Latency Analysis: To validate the efficiency of
XFall, we further evaluate the system latency. Figure 20 shows
the end-to-end latency of XFall running on a low-power
commercial laptop. The latency consists of SDP calculation
delay and STATE classification delay. As shown, with 1500 ms
of CSI as input, the average end-to-end latency is 59.9 ms, with
an average of 46.8 ms for SDP calculation and 13.1 ms
for STATE classification. Results show that most of the
system latency is induced by the SDP calculation, particularly
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Fig. 20. System latency analysis.

Fig. 21. Model scalability analysis.

due to the auto-correlation function computation. To con-
clude, the latency evaluation results indicate that XFall could
achieve real-time monitoring for fall detection, emphasizing
its readiness and reliability for deployment in scenarios where
immediacy is critical.

7) Model Scalability Analysis: Evaluating the scalability of
the STATE model within XFall is crucial for understanding
its performance under varying configurations. To achieve this,
we examined how various configurations affect model param-
eters, computation overhead, and overall accuracy, providing
insights for optimal model choice. Specifically, we exper-
imented with 9 different configurations, stemming from
3 variations of attention block numbers (32B, 48B, 64B)
and 3 different amounts of attention heads (4H, 8H, 16H),
as illustrated in Figure 21. The results reveal that increasing
both the number of blocks and attention heads leads to a
rise in the model parameters and performance. However,
we observed a diminishing return in performance gains. For
instance, expanding the parameter size from 10M to 40M
resulted in over a 5% increase in performance. Yet, a fur-
ther increase from 40M to 160M yielded only around a
3% improvement. Moreover, it was found that adding more
attention heads enhances both model performance and the
number of parameters without significantly adding to the
overall computational load. This is attributed to the decreased
computational demand per attention path as the number of
attention heads increases. The above findings indicate that
our STATE model exhibits commendable scalability. Further
augmentation in the number of blocks and attention heads is
anticipated to enhance model precision further, showcasing
XFall’s potential for high accuracy in fall detection. This
scalability analysis underscores the STATE model’s flexibility
and its ability to adapt to various computational platforms,
making XFall a versatile tool for real-time fall detection.

Fig. 22. Effectiveness of multiple AP collaboration.

8) Effectiveness of Multiple AP Collaboration: While XFall
is designed to operate effectively with a single Wi-Fi link,
exploring the potential for performance enhancement through
multi-link collaboration was deemed essential to unveil its
performance limits. In this context, we investigated the fea-
sibility of joint fall detection by integrating CSI data from
multiple APs deployed within the same environment. For
this purpose, 1 to 3 sets of XFall units were deployed, and
their outputs were combined using two classical ensemble
learning strategies: XGBoost [46] and Random Forest [47].
As depicted in Figure 22, integrating the data from 2 APs
using XGBoost and Random Forest enhanced the system’s
accuracy to 98.3% and 98.1%, respectively. Further expanding
the collaboration to 3 APs can push the accuracy rates to
98.7% and 98.4%, albeit at the cost of over 2× computa-
tional complexity. Notably, XGBoost emerged as the more
favorable ensemble learning strategy, offering higher and more
consistent performance enhancements. In summary, multiple
AP collaboration could significantly exceed XFall’s inherent
performance upper bound, highlighting a promising direction
for future enhancements of XFall.

VIII. CONCLUSION

This paper proposes the design and implementation of
XFall, the first domain-adaptive fall detection system based
on Wi-Fi. XFall derives an environment-independent feature
called spatial distribution profile (SDP), and employs a novel
spatio-temporal attention-based encoder (STATE) to learn the
general fall representation. With our proposed cross-modal
unified representation learning framework, a visual model
can be leveraged to supervise the training process, which
effectively reduces the need of labeled Wi-Fi data. Our result
shows that XFall outperforms state-of-the-art Wi-Fi-based
fall detection solutions in both in-domain and cross-domain
evaluation, making a promising step towards practical and
ubiquitous Wi-Fi sensing.
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