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Abstract—Indoor navigation is essential to a wide spectrum of applications in the era of mobile computing. Existing vision-based

technologies suffer from both start-up costs and the absence of semantic information for navigation. We observe an opportunity to

leverage pervasively deployed surveillance cameras to deal with the above drawbacks and revisit the problem of indoor navigation with

a fresh perspective. In this paper, we propose iSAT, a system that enables public surveillance cameras, as indoor navigating satellites,

to locate users on the floorplan, tell users with semantic information about the surrounding environment, and guide users with

navigation instructions. However, enabling public cameras to navigate is non-trivial due to 3 factors: absence of real scale, disparity of

camera perspective, and lack of semantic information. To overcome these challenges, iSAT leverages POI-assisted framework and

adopts a novel coordinate transformation algorithm to associate public and mobile cameras, and further attaches semantic information

to user location. Extensive experiments in 4 different scenarios show that iSAT achieves a localization accuracy of 0.48m and a

navigation success rate of 90.5 percent, outperforming the state-of-th-art systems by >30%. Benefiting from our solution, all areas with

public cameras can upgrade to smart spaces with visual navigation services.

Index Terms—Indoor localization, navigation, map construction, computer vision

Ç

1 INTRODUCTION

INDOOR location services have established the foundation
for smart life and space. Many navigation systems have

been proposed over the past decade using various solutions,
including Wi-Fi [1], [2], [3], RFID [4], [5], inertial sensors [6],
[7], and cameras [8], [9], etc. Among these systems, vision-
based navigation has become one of the most attractive sol-
utions in practice. By leveraging the Visual Odometry
(VO) [10] and Simultaneous Localization and Mapping
(SLAM) [11], vision-based systems can locate users with
fine granularity and construct the map of surrounding envi-
ronments [12], [13], [14], [15]. In addition, vision-based solu-
tions hold the potential to offer user-friendly interaction
with visual navigation instructions rendered on real-world
objects in the user interface, based on the continuously
growing AR/MR technology [16].

According to our deployment experience and customers’
demands, however, existing vision-based navigation sys-
tems suffer from two drawbacks. First, indoor map con-
struction incurs high bootstrapping overhead. Specifically,
all existing solutions based on visual SLAM involve a labor-
intensive and time-consuming site survey to gather images
(or keyframes) at each location in an environment. What’s
worse, due to frequent Line-Of-Sight (LOS) blockage by
crowds or environmental dynamics, such a cumbersome

site survey needs to be repeated over time. Although some
recent works adopted a peer-to-peer (P2P) navigation mode
by leveraging crowd-sourcing scheme [14], [17], [18], [19],
they also need considerable start-up efforts and suffer from
limited coverage since the crowd-sourced trajectories can-
not cover all destinations. Second, the positioning results
from the images are irrelevant to the floorplan, thus lack of
the necessary semantic information for navigation, for
example, the name of destinations like Room 209 or Star-
bucks in the floorplan. In detail, the map generated from
images is merely a set of keyframes and map points, whose
locations are in the camera-coordinate, rather than floor-
plan-coordinate.1 To navigate users/robots to the destina-
tions in the floorplan, it’s essential to associate the
floorplan-coordinate and the camera-coordinate.

Nowadays, surveillance cameras are pervasively
deployed in public areas, such as shopping malls, museums,
galleries, and so on [20]. On this basis, we find an opportu-
nity to overcome the above limitations and underpin a navi-
gation solution with a novel perspective — Can we enable
public cameras to navigate users? The rationale behind this
vision is two-fold: on the one hand, surveillance cameras
hold the potential to serve as the automatic map constructor
and real-time map updater, which will ease, even eliminate,
the human efforts for site-survey. On the other hand, with
the prior knowledge of the camera’s location, surveillance
cameras can be leveraged as anchors to associate camera-
coordinate and floorplan-coordinate, and hence provide the
generated map with absolute locations in the floorplan.
However, translating the insight into a navigation system is
non-trivial and faces three significant challenges:

� The authors are with the School of Software and BNRist, Tsinghua Univer-
sity, Beijing 100084, China. E-mail: {chiguoxuan, xujingao13, zhjialin16,
qzhangqz123, tsinghuamq, hmilyyz}@gmail.com.

Manuscript received 11 Apr. 2020; revised 29 May 2021; accepted 15 June 2021.
Date of publication 28 June 2021; date of current version 6 Jan. 2023.
(Corresponding author: Zheng Yang.)
Digital Object Identifier no. 10.1109/TMC.2021.3092725 1. In this paper, these two coordinates are illustrated in Fig. 4a.

1010 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 2, FEBRUARY 2023

1536-1233 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on September 02,2024 at 02:56:57 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-6941-1612
https://orcid.org/0000-0002-6941-1612
https://orcid.org/0000-0002-6941-1612
https://orcid.org/0000-0002-6941-1612
https://orcid.org/0000-0002-6941-1612
https://orcid.org/0000-0002-8347-2657
https://orcid.org/0000-0002-8347-2657
https://orcid.org/0000-0002-8347-2657
https://orcid.org/0000-0002-8347-2657
https://orcid.org/0000-0002-8347-2657
https://orcid.org/0000-0003-2037-7924
https://orcid.org/0000-0003-2037-7924
https://orcid.org/0000-0003-2037-7924
https://orcid.org/0000-0003-2037-7924
https://orcid.org/0000-0003-2037-7924
https://orcid.org/0000-0003-4048-2684
https://orcid.org/0000-0003-4048-2684
https://orcid.org/0000-0003-4048-2684
https://orcid.org/0000-0003-4048-2684
https://orcid.org/0000-0003-4048-2684
mailto:chiguoxuan@gmail.com
mailto:xujingao13@gmail.com
mailto:zhjialin16@gmail.com
mailto:qzhangqz123@gmail.com
mailto:tsinghuamq@gmail.com
mailto:hmilyyz@gmail.com


1) Absence of real scale. In additional to simply locating
users in the floorplan, a navigation service should also tell
them the direction and absolute distance to the destination.
However, mainstream public cameras and backside imag-
ing cameras on commodity smartphones are monocular
cameras, and solutions based on such cameras will hardly
acquire the absolute distance in real-world [21]. Hence, it’s
challenging for leveraging public cameras to meet the
demands for user-friendly navigation.

2) Disparity of camera perspective. Although both mobile
camera and surveillance camera follow pinhole camera
model and capture overlapping areas, their perspectives and
intrinsic parameters would vary a lot [22]. Specifically, the
mobile camera takes shots from a horizon-view, while the
surveillance camera takes shots from a top-view at a rela-
tively far distance. Matching frames from two cameras with
different perspectives can be difficult. Different intrinsic
parameters of two heterogeneous cameras also hinder accu-
rate pose estimation. As a result, the transformation between
camera-coordinate and floorplan-coordinate is non-trivial.

3) Lack of semantic information. In a typical application sce-
nario of the navigation system, a user will either input the
name of stores (e.g. McDonald’s, Room 209) or select a loca-
tion on the floorplan as a destination. That is to say, from
the user’s perspective, the destination is semantic informa-
tion on the floorplan. However, the map constructed by
visual SLAM in previous works is typically a set of key-
frames and map points, lacking semantic information for
navigation without site survey.

To tackle the above challenges, we design iSAT, an indoor
navigation system that enables public cameras to serve as
indoor SATellites, whose missions are similar to the outdoor
satellites in GPS systems. As shown in Fig. 1, in iSAT, surveil-
lance cameras are leveraged to 1) locate users with absolute
location on indoor floorplan, 2) tell userswith semantic infor-
mation about surrounding environment, 3) guide users with
navigation instructions rendered on the mobile device. To
integrate the public cameras and mobile cameras, iSAT uses
images containing the same Point Of Interest (POI) from
both sides and leverages advanced visual features to calcu-
late the relative position between the public camera and the
mobile camera. To obtain the real scale, iSAT combines geo-
metric information of surveillance camera and POI with cal-
culated relative poses to get a user’s location in floorplan. To

acquire semantic information about the surrounding envi-
ronment, iSAT transforms the 3D points to their 2D coordi-
nates in floorplan based on the results of previous processes
and then attaches semantic information to them.

We implement iSAT on the server and four different
types of smartphones. We conduct extensive experiments
under four common scenarios of indoor navigation systems
including a shopping mall, office building, library, and
teaching building. The total size of the experimental areas is
more than 4000 m2. We locate and navigate users for more
than 20 hours, collecting 115.1k video frames. Evaluation
results demonstrate that iSAT achieves a localization accu-
racy of 0.48 m, outperforming existing state-of-the-art sys-
tems by more than 30 percent. The navigation success rate
of iSAT is 90.5 percent, which can compete with most other
existing systems.

Our key contributions are summarized as follows:

� To the best of our knowledge, this is the first work
that combines mobile cameras with surveillance
cameras and further enables them to locate, tell and
guide mobile users/robots with little human start-up
effort. Benefiting from this technology, all areas with
public cameras can upgrade to smart spaces with
visual navigation services.

� We design novel algorithms to solve three chal-
lenges, including the absence of real scale, disparity
of camera perspective, and lack of semantic informa-
tion to enable public cameras to navigate. Our
scheme of interaction and communication between
ambient and mobile cameras provides a new per-
spective to underpin indoor localization and naviga-
tion with fine granularity.

� We fully prototype iSAT and conduct extensive
experiments under 4 different scenarios with 5 state-
of-the-art approaches. The evaluation results show
that iSAT achieves delightful results (localization
accuracy of 0.48 m and navigation success rate of
90.5 percent) and outperforms previous works in all
scenarios, shedding light on pervasive indoor navi-
gation for mobile users/robots.

The rest of the paper is organized as follows. We first
present the overview of iSAT in Section 2, followed by a
detailed presentation of Real Scale Acquisition in Section 3

Fig. 1. User interface of our navigation system. iSAT provides users with: 1) instant location and orientation in constructed map and floorplan, 2) nav-
igation instruction rendered in user’s view and distance to next crossing point, 3) semantic information about surrounding environment.
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and 3D-2D Coordinate Transformation in Section 4. Methodol-
ogy of Localization, Navigation, and Semantic Map Construc-
tion is proved in Section 5. Implementation and evaluation
are described in Section 6. Then we review related works in
Section 7 and conclude this paper in Section 8.

2 SYSTEM OVERVIEW

Fig. 2 sketches the system architecture of iSAT.

2.1 Workflow From User Perspective

When a user activates iSAT, the mobile camera is automati-
cally turned on. Then, it records videos of the surrounding
environment and sends the videos to the server. After some
lightweight processing which takes no more than 0.5s, the
server will send the user’s location back to themobile device.
Then, the client side of iSATwill display the instant location
with floorplan on the screen. If the user wants to be navi-
gated to a certain location in this building, he/she can either
select a location on the floorplan or input a semantic location
(e.g. Room 211) as destination. Afterwards, the server side of
iSAT will choose the optimal path and navigate the user to
the destination. During the navigation process, a 3D seman-
tic mapwhich shows different functional areas of the current
buildingwill be constructed in real-time.

2.2 Workflow From Server Perspective

Once the system is deployed, iSAT enters the initialization
phase. During the initialization phase, iSAT loads the floorplan
with semantic information (e.g. the coordinates of POI, land-
marks and surveillance cameras, etc.), which is essential for
localization and navigation. By analyzing connectivity among
landmarks, iSAT generates a connected graph and runs a path
planning algorithm. The path planning result can be usedmul-
tiple times and does not need to be updated unless the indoor
environment changes (e.g. new surveillance cameras are
installed or functions of certain rooms are changed).

During the localization and navigation phase, multiple
surveillance cameras monitor different public areas in the
building and stream recorded videos to the server. Once the

videos recorded and uploaded by client are also received by
the server, the Real Scale Acquisition Module of iSAT starts
kicking off, which calculates the relative pose (i.e. orienta-
tion and location) between the mobile camera and surveil-
lance camera, and further solves the real scale using prior
provided semantic information (e.g. the distance from sur-
veillance camera to POI in real world). Leveraging the Coor-
dinate Transformation Module, iSAT gets a transformation
matrix, which transforms 3D points in camera-coordinate to
the corresponding 2D points in floorplan-coordinate. Com-
bining the results of both two modules mentioned above,
iSAT obtains the user’s initial location on the floorplan.

In order to track and navigate users in non-line-of-sight
(NLOS) environment, iSAT integrates Visual Odometry Mod-
ule and fully utilizes the semantic information. After getting
the user’s initial location, the VO module takes over the sys-
tem and continuously estimates the user’s motion. Further-
more, iSAT generates user’s trajectory and provides real-time
navigation instructions based on user’s current location. It is
worth mentioning that once a POI is captured by the mobile
camera during the navigation process, the relocalization
function of iSAT activates automatically, which effectively
reduces the accumulative errors and avoids severe deviation.
During the navigation process, VO also generates the point
cloud map of the surroundings, which will be modified into
a 3D semantic map based on the division of functional areas
in the building. The constructed map can not only provide
room-level semantic information for robots to complete cer-
tain tasks (e.g. automatic package delivery), but also have
great potential to be combined with AR/MR technology to
provide user-friendly interaction.

On the basis of the above procedures, 1) instant localiza-
tion result on floorplan, 2) navigating instructions rendered
in user’s view, and 3) semantic information about the sur-
rounding environment are sent back to user for navigation.

3 REAL SCALE ACQUISITION

In recent years, feature-based image registration and pose
estimation are widely used in localization and navigation

Fig. 2. iSAT architecture.
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systems [14], [23]. However, due to the lack of real-world
scale, previous vision-based indoor localization and naviga-
tion systems need to be integrated with other modules (e.g.
IMU sensor and wireless module) and cannot work alone.
In this section, we design an approach of real scale acquisi-
tion, which enables surveillance cameras and mobile cam-
eras to obtain the absolute location without extra modules.

Fig. 3 shows the workflow of the real scale acquisition
module, which can be divided into three parts: POI detec-
tion, relative pose estimation, and scale conversion, which
will be further introduced in detail. iSAT first extracts fea-
ture points in the video frames from all surveillance cam-
eras and user’s mobile camera and chooses the best
surveillance camera whose captured scene is the most simi-
lar to that of the mobile camera, and then detects POI on
video frames. Afterwards, iSAT estimates the relative pose
between the mobile camera and the surveillance camera by
geometry constraints, and calculates the relative location
between the mobile camera and POI by triangulation. Then,
with known semantic information, iSAT solves the scale
conversion ratio, which converts the length in camera-coor-
dinate system to the length in the real world.

As aforementioned, due to the large perspective dispar-
ity between the mobile camera and surveillance camera, it is
non-trivial to match feature points extracted from different
images straightforwardly. To solve the challenge, the key
innovations of iSAT are two-fold: first, we compare different
feature points and evaluate their performance with diverse
view disparity (i.e., the angle at POI) in different experimen-
tal scenarios. Based on extensive evaluations, we finally
choose the BRISK [24], which is the most compelling fea-
ture. The experiment will be described in Section 6.2.1; And
second, we modify the code of the feature matching algo-
rithm, which is provided in the pose estimation function in
OpenCV library, to support two cameras with diverse
intrinsic parameters (i.e., K1 and K2 in the following
content).

3.1 POI Detection

The whole process of POI detection can be divided into two
stages. First, iSAT automatically selects the best one from all
surveillance cameras. Due to the large number of surveil-
lance cameras in large-scale public places (e.g. shopping
mall), feature matching is usually time-consuming and
incurs high system latency. Therefore, we use DBoW [25] to
calculate the similarity between the frames captured by the
mobile camera and surveillance cameras. By computing the

similarity of word vector corresponding to each video
frame, iSAT gets the best surveillance camera whose cap-
tured scene is the most similar to that of the mobile camera.

Afterwards, iSAT recognizes POI by matching the feature
points in the mobile camera frame and surveillance camera
frame. Since the location and orientation of the surveillance
camera are fixed, we assume that the POI is always pro-
jected on a specific region (i.e. POI region) of the surveil-
lance camera frame as shown in Fig. 4b. By extracting the
features in that region and selecting the most similar one in
mobile camera frame, iSAT detects POI on both mobile cam-
era frame and surveillance camera frame.

It’s worth mentioning that setting the size of the POI
region is a trade-off problem. If the POI region is set too
small, few feature points can be detected in this region, thus
the POI detection module will be more likely to fail. If the
region is set too large, then the system error will increase.
The guidelines for choosing POI regions are summarized as
follows. First, the POI region must be captured by at least
one surveillance camera and not easily obscured by other
objects. Second, the texture of the POI region should be rich
enough to extract several feature points.

3.2 Relative Pose Estimation

In this subsection, we mainly focus on the pose estimation
technique by which iSAT gets the location of both surveil-
lance camera and POI in camera-coordinate (i.e. Os and P in
Fig. 4b).

As shown in Fig. 4b, iSAT extracts features on both
mobile camera frame and surveillance camera frame, and
then estimates their relative pose by image registration. Epi-
polar geometry constraints [26], [27] is a widely used
method to estimate the relative pose between two images.
By matching features on mobile camera frame and surveil-
lance camera frame, iSAT obtains several pairs of 2D feature
points. Denote the 2D feature point on mobile camera frame
as ðu1; v1ÞT, and the matched feature point on surveillance
camera frame as ðu2; v2ÞT. Denote P ¼ ðX;Y; ZÞT as the 3D
point in camera-coordinate corresponding with them. For
ease of notion, we transform feature points into homoge-
neous coordinates as p1 ¼ ðu1; v1; 1ÞT and p2 ¼ ðu2; v2; 1ÞT
respectively. According to the pinhole camera model, we
get their relationships as follows:

s1p1 ¼ K1P;

s2p2 ¼ K2ðRcsPþ tcsÞ;
(1)

where K1 and K2 are known intrinsic matrices of mobile
camera and surveillance camera respectively, s1 and s2 are
the depths of feature point in mobile frame and surveillance
camera frame, while Rcs and tcs are the rotation matrix and
translation vector from camera coordinate to surveillance
camera coordinate respectively. Then we eliminate P and
transform Equation (1) into the following form:

P ¼ s1K
�1
1 p1;

s2K
�1
2 p2 ¼ s1RcsK

�1
1 p1 þ tcs:

(2)

Make cross product of Equation (2) and the translation vec-
tor t, and then multiply ðK�1

1 p1ÞT on both sides. After
deduction, we get the epipolar geometry constraints as

Fig. 3. Workflow of real scale acquisition module.
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follows:

p2
�TK2

�TEK1p1 ¼ 0;

E ¼ tcs � Rcs;
(3)

where E is the Essential Martix.
As mentioned above, feature matching usually provides

hundreds of well-matched feature points, which can be
used to solve Equation (2). iSAT first uses RANSAC (Ran-
dom Sample Consensus) [28] algorithm to calculate E, and
then gets tcs and Rcs through SVD (Singular Value
Decomposition).

Although iSAT solves tcs and Rcs successfully, the depths
of POI (s1 and s2) are lost during the solving process. Fortu-
nately, with the help of triangulation [29], iSAT can recon-
struct 3D coordinates of POI based on its projection on 2D
frames. Suppose p1 and p2 are feature points corresponding
to POI, we can solve s1 by making cross product of vector
K�1

2 p2 on both sides of Equation (2):

s1RcsðK�1
1 p1Þ � ðK�1

2 p2Þ þ tcs � ðK�1
2 p2Þ ¼ 0: (4)

Since iSAT has solved the rotation matrix Rcs and the trans-
lation vector tcs, Equation (4) can be treated as a linear equa-
tion of s1. iSAT can also get s2 by simply making cross
product of K�1

1 p1 and Equation (2), thus constructing a lin-
ear equation of s2 in the same way. Based on the depth s1, s2
and the translation vector tcs, the shape of ~OcOsP in
Fig. 4b is completely determined.

3.3 Scale Conversion

So far, we have determined the geometric relationship (i.e.
the shape of ~OcOsP ) in camera-coordinate. However, due
to the scale ambiguity of monocular vision [21], the user’s
location in the real world remains unknown. More specifi-
cally, s1, s2 and ktcsk2 in Section 3.2 only represent the rela-
tive length of OcP

��!
, OsP
��!

and OcOs
���!

instead of the physical
length in real world.

Fortunately, with the help of semantic information, iSAT
can assign the physical length (in meters) to ~OcOsP . Sup-
pose the real-world distance from surveillance camera to
POI is l meters. Obviously, there is only a constant conver-
sion ratio between l and s2 ¼ kOsP

��!k2. iSAT calculates the

conversion ratio as follows:

r ¼ l

kOsP
��!k2

¼ l

s2
: (5)

In other words, one unit length in camera-coordinate corre-
sponds to rmeters in the real world.

4 3D-2D COORDINATE TRANSFORMATION

All these poses and locations mentioned in Section 3 are in
camera-coordinate. To get the user’s location on the floor-
plan, a transformation from camera-coordinate to floorplan-
coordinate is necessary. Therefore, we analyze the differen-
ces between the two coordinates in the following aspects:

1) Different Dimentions. The floorplan-coordinate is 2D,
while the camera-coordinate is 3D.

2) Different Scales. The scale of floorplan-coordinate is
the unit length in real world(e.g. meter), while stan-
dardized scale, which varies a lot in different appli-
cation scenarios, is used in camera-coordinate.

3) Different Origins. The origin of floorplan-coordinate
is usually preset at the corner of the building(e.g. O
in Fig. 4a). However, the origin of camera-coordinate
depends on the location where the user first activates
iSAT on the smartphone (e.g. Oc in Fig. 4b).

4) Different Orientations. As shown in Fig. 4a, the orien-
tation of floorplan-coordinate is preset, while the the
orientation of camera-coordinate is determined by
user’s orientation when iSAT is activated.

Except the different scales problem which has been
solved in Section 3, iSAT needs to eliminate three other dif-
ferences, which will be described in the following subsec-
tions. For ease of notion, we denote the user’s initial
location on floorplan as A, while the known 3D location of
surveillance camera and POI as B and C respectively, as
shown in Fig. 4a.

4.1 3D-2D Projection

To locate and track users on 2D floorplan, a projection from
3D camera-coordinate to the ground is necessary. Our sys-
tem suggests users to keep the y-axis (shown in Fig. 4a) of

Fig. 4. Application scenarios: (a) from a real-world perspective, mobile camera and surveillance camera both capture POI, then iSAT locates the user.
(b) from the camera-coordinate perspective, iSATmatches feature points, detects POI and estimates relative pose between mobile camera and sur-
veillance camera.
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their device perpendicular to the ground when starting ser-
vice. So the 3D-2D projection matrix can be expressed into
the following form:

Mp ¼ 1 0 0
0 0 1

� �
; (6)

which means iSAT only needs to delete the y-axis compo-
nent of Oc, Os and P to complete the 3D-2D projection.

More specifically, suppose iSAT projects ~OcOsP from
camera-coordinate to the horizontal plane as ~O0

cO
0
sP

0, we
can get O0

sP
0���!
by the following equation:

O0
sP

0���! ¼ MpðOsP
��!Þ: (7)

It’s worth mentioning that iSAT only requires the users to
hold the smartphones with its y-axis perpendicular to the
ground during the initial localization stage. Once associate
the 3D and 2D coordinates, which indicates the user’s initial
location is acquired, users can hold their smartphones
freely.

4.2 2D-2D Transformation

However, after projection and scaling, rO0
sP

0���!
and BC

�!
are

still not equal. Even though they have the same length, they
are not in the same 2D coordinate. Therefore, iSAT calcu-
lates the 2� 2 rotation matrix Rf and 2� 1 translation vector
tOA in two steps.

First, iSAT gets Rf by solving an optimization problem in
the following form:

Rf ¼ argmin
Rf

e ¼ argmin
Rf

kBC�!� rRfðO0
sP

0Þ���!k
2

2: (8)

Then, by scaling and rotating the translation vector tcs, iSAT
gets tAB ¼ AB

�!
in the floorplan coordinate as follows:

tAB ¼ AB
�! ¼ rRfMptcs: (9)

Therefore, the origin of the world coordinate on 2D floor-

plan (i.e. tOA ¼ OA
�!

) can be calculated by iSAT:

tOA ¼ tOB � rRfMptcs: (10)

Based on the scale conversion ratio r, projection matrix
Mp, rotation matrix Rf and translation vector tOA, iSAT can
tranform any point from camera-coordinate to floorplan-
coordinate.

5 LOCALIZATION, NAVIGATION AND SEMANTIC

MAP CONSTRUCTION

With all information provided in Section 3 and Section 4,
iSAT can successfully gets user’s location on floorplan, and
then gives navigation instructions. During the navigation
process, iSAT constructs a 3D semantic map based on the
known semantic information and point cloud. In this sec-
tion, we explain the technical details of iSAT to achieve
localization, navigation and semantic map construction.

5.1 High-Accuracy Localization

The process of high-accuracy localization can be divided
into two parts: initial location acquisition and real-time
tracking.

Once the system is activated, iSAT first gets the user’s ini-
tial location on the floorplan (i.e. location A in Fig. 4a),
which can be solved easily according to Equation (10).

However, the pose estimation function in Section 3.2 can
only work in line-of-sight (LOS) environments, where POI
can be captured by both mobile camera and surveillance
camera. That means iSAT cannot track user’s real-time loca-
tion in non-line-of-sight (NLOS) environment using techni-
ques mentioned above. Therefore, Visual Odometry (VO)
[10] is introduced into iSAT, which estimates the motion of
a camera in real-time using sequential frames. The VO mod-
ule in iSAT exploits the idea of Perspective-n-Point
(PnP) [30] to estimate continuous motion of the mobile cam-
era. By matching feature points on two adjacent frames,
iSAT can get the user’s real-time pose in camera-coordinate.

Concretely, by the image registration and triangulation
in Section 3.2, iSAT acquires a set of points correspondences,
each composed of a 3D reference point Pi ¼ ðXi; Yi; ZiÞT in
camera-coordinate and its 2D projection pi ¼ ðui; vi; 1ÞT on
the kth mobile camera frame.

Denote Tk as the transformation matrix of the kth frame,
which consists of a rotation matrix Rk and a translation vec-
tor tk. According to pinhole camera model and rigid trans-
formation, we have:

sipi ¼ KðRkPi þ tkÞ ¼ KTkPi: (11)

Then it comes to solve an optimization problem to estimate
transformation:

Tk ¼ argmin
Tk

e ¼ argmin
Tk

1

2

Xn
i¼1

pi � 1

si
KTkPi

����
����
2

2

: (12)

To solve this problem, iSAT adopts EPnP [31] algorithm, an
efficient OðnÞ non-iterative solution of PnP to minimize the
cost function e and acquire the optimal pose Tk. Therefore,
iSAT gets user’s location and constructs trajectory in cam-
era-coordinate.

Once iSAT gets the initial location, VO module turns on
automatically, and gets user’s real-time translations
ft0; t1; t2; . . .g in camera coordinate as the user moves for-
ward. Denote AðiÞ as the real-time location corresponding to
the ith frame in floorplan-coordinate. In order to locate users,
iSAT only needs to project the translations to the floorplan:

tOAðiÞ ¼ tOA þ tAAðiÞ ¼ tOA þ rRfMpti: (13)

5.2 Navigation Methodology

During the initialization phase, iSAT reads semantic informa-
tion, including the names of multiple landmarks and their
connectivity, from the configuration files. Then iSAT con-
structs a connected graph G ¼ hV;Ei, where the node vi 2 V
represent the location of the ith landmark and edge eij 2 E
represent the distance from vi to vj in real world. After that,
the Dijkstra algorithm is applied to each node to obtain the
shortest path and stores the result. When a user requests
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navigation service, iSAT will first get the user’s current loca-
tion and take the nearest landmark as the starting point, then
give navigation instructions to the user. During the navigation
process, the system will continuously get the user’s real-time
location from the visual odometry and lead user to the next
landmark in planned path, until user arrives at the destination.
Since VO is only based on the mobile camera, even in the blind
area of the surveillance camera, user’s location and trajectory
can be reported correctly.

It’s worth mentioning that iSAT introduces the relocation
function, which significantly improves the navigation suc-
cess rate in long-path navigation. During the navigation
process, the POI recognition function mentioned in Sec-
tion 3.1 runs continuously. Once the mobile camera success-
fully recognizes the POI, the system will automatically
perform surveillance camera assisted localization again to
correct user’s current location.

5.3 Semantic Map Construction

In our system, a 3D semantic map can: 1) Tell users/robots
about the surrounding environment with room-level seman-
tic information, which is important in certain scenarios (e.g.
robot automatic package delivery). 2) Record the trajectory
that the user/robot goes through, which is a convenient solu-
tion for some specific problems (e.g. reverse car-searching in
indoor parking). 3) Have great potential to be combinedwith
AR/MR technology. Compared with a fixed 2D map, 3D
semantic map is built from users’ perspective (i.e. mobile
camera coordinate), which means instructions and descrip-
tions can be easily rendered on users’ views.

As mentioned in Section 5.2, once iSAT gets user’s initial
location, the visual odometry (VO) module will continu-
ously track and navigate the user. During this process, VO
module creates hundreds of new 3Dmap points via triangu-
lation. Denote the set of map point as fP1;P2;P3; . . . ;PNg,
each point Pi correspond to a certain location ðXi; Yi; ZiÞT in
world coordinate.

To construct a 3D semantic map from map points, iSAT
needs to transform map points from camera-coordinate to
floorplan-coordinate and then determines its semantic attri-
bute according to which functional area its projection
belongs to, as shown in Fig. 5. Concretely, iSAT first calcu-
lates the projection for each map point Pi and gets its projec-
tion:

pi ¼ rRfMpPi þ tOA; (14)

and then gives label to each 3D point. Suppose we divide
the floor into M disjoint areas, A ¼ fA1; A2; A3; . . . ; AMg, we
get li ¼ j if pi 2 Aj.

6 IMPLEMENTATIONS AND EVALUATION

We implement iSAT on the server and conduct experiments
using different mobile devices over various scenarios. In
this section, we first introduce experimental settings and
then present the detailed evaluation.

6.1 Experimental Methodology

6.1.1 Experimental Scenarios

We carry out extensive experiments in four typical public
areas, including a library, an office building, a teaching
building and a shopping mall. As shown in Fig. 6, these
areas have different floor layouts. Besides, user behaviors
appear to be unique in these areas as well. For instance,
office buildings are often filled with people during the day-
time while almost empty at night. The teaching building is
crowded or empty to different extents depending on the
course schedule. The shopping mall is the most crowded
place, while there are only a few people in the library.

Details of evaluations are summarized in Table 1. We uti-
lize four different types of smartphones for data collection,
including Samsung Galaxy S10, HUAWEI Honor 20, Google
Nexus 6p and Google Pixel, which are equipped with
mobile cameras with different camera intrinsics (i.e. focal
length, lens center and distortion).

6.1.2 Experimental Setup

The client side of iSAT is implemented on the Android plat-
form based on ROS[32] Android Platform with all of the
mobile devices mentioned above, which record video at
30fps or 60fps. The size of each frame recorded by mobile
cameras is either 1920 � 1080 or 1280 � 720 pixels, depend-
ing on the complexity of experimental scenarios. The HIKI-
VISION-C3A is used as the surveillance camera, which
continuously records and streams videos to the server. The
resolution of surveillance cameras is 1920 � 1080. There are
2-6 surveillance cameras deployed in each scenario. The
server is equipped with i7-9700 CPU of 4.7GHz main fre-
quency and 16G RAM, it runs Ubuntu 16.0.4 operating sys-
tem. The communication between the client and the server
is based on ROS, which integrates easy-to-use communica-
tion modules to transport text, images and videos between
different devices. So that we don’t need to focus on the
detailed design of the communication module.

WemodifyORB-SLAM [33] and use it as visual odometry.
And we use Pangolin, a lightweight portable rapid develop-
ment library formanagingOpenGL display, to visualize con-
structed 3D point cloudmap and validate results.

The iSAT system needs to be deployed before evaluation.
With a centimeter-level-accuracy floorplan, 3D locations of
all POI and surveillance cameras, as well as the division of
functional areas, can be acquired with little effort. Then, all
the data is put into the configuration file, iSAT automatically
completes the initialization phase.

6.1.3 Evaluation Metrics and Ground Truth Acquisition

In experiments, 3 volunteers of different heightswith different
smartphone holding gestures are recruited. We principally
test three aspects of performance about iSAT: localization
accuracy, navigation success rate and 3D semantic map

Fig. 5. iSAT transforms 3D points from camera-coordinate to floorplan-
coordinate and then determines its semantic attribute according to which
functional area its projection belongs to.
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construction accuracy. To evaluate the localization perfor-
mance, we focus on the initial location estimation bias, just
like related works [23], [34]. We invite volunteers to take pho-
tos within surveillance cameras’ view casually. Then, iSAT
will calculate the volunteers’ location by leveraging images
captured from both smartphones and surveillance cameras;
To evaluate the navigation performance, volunteers can
choose any location, wherever POI can be captured, as the
navigation starting point, and then select any location in the
experimental area as the endpoint. Same as recent works [14],
[35], we also set checkpoints at turns, escalators and some
landmarks on each trajectory. The navigation success rate is
defined as the rate of the users’ successful arrival at the desti-
nationwithin a radius of 2meters; And to evaluate the seman-
tic map construction performance, as mentioned above, all
the information about floorplan including 2D segmentation is
predefined. After each set of experiments, we export all the
3D point cloud data and manually calculate the accuracy of
semanticmap construction.

6.1.4 Comparative Methods

To extensively evaluate the performance of iSAT, we addi-
tionally implement five different state-of-the-art indoor
localization and navigation systems for comparison. All
these systems are mainly based on mobile camera or sur-
veillance camera.

1) iVR [23]: iVR is the most recent vision+radio+sensor
tracking framework, which combines observations

from surveillance cameras, WiFi radio signals and
IMUdata and outperforms the state-of-the-art system.

2) PHADE [22]: PHADE is a recent vision+sensor localiza-
tion and tracking framework, which extracts human
motion features fromvideo and IMUsensors, and fuses
both patterns to locate and identify different users.

3) ClickLoc [12]: ClickLoc is a typical high accurate
localization system integrating mobile vision and
IMU signals from smartphone.

4) Pair-Navi [14]: Pair-Navi is a real-timeP2Pnavigation sys-
tem based on amobile camera, requiring no pre-installed
infrastructure or pre-deployed localization services.

5) Travi-Navi [35]: Travi-Navi is a vision-guided P2P
navigation system that enables a self-motivated user
to deploy indoor navigation services without com-
prehensive indoor localization systems.

iSAT cannot only locate users but also navigate them to a
certain destination with the help of a pre-known 2D floor-
plan. Our experiment with comparative systems includes
two parts: localization and navigation. In the first part, iSAT
is compared with iVR, PHADE, and ClickLoc; In the second
part, iSAT is compared with Pair-Navi and Travi-Navi.

6.2 Component Study

6.2.1 Comparison of Different Features

In this subsection, we compare different feature points and
tested their performance in different experimental scenarios.
As shown in Table 2, we recorded the performance of SIFT,

Fig. 6. Experimental areas.

TABLE 1
Evaluations in Different Scenarios

# Scenarios Size(m2) Cameras Smartphones Frames Duration

1 Library 320 3 2 10.2k 3h in 2 days
2 Office Building 600 2 4 22.8k 6h in 3 days
3 Teaching Building 1,360 6 4 27.6k 4h in 3 days
4 Shopping mall 2,130 6 4 54.5k 6h in 3 days
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ORB, and BRISK, including location error, matching error, and
time cost. All these experiments are conducted under different
disparities (i.e. angle at POI) of 15�, 30�, and 45� respectively.
Compared with ORB and SIFT, BRISK achieves better perfor-
mance with an angle of over 30�, proving its effectiveness
when processing images with large disparity. In addition,
BRISK feature point extraction and matching speed are satis-
factory andwill not significantly impact the system latency.

6.2.2 Performance of Real Scale Acquisition

Real scale acquisition module determines the localization
accuracy, since it associates pixel changes with physical dis-
tance. Inaccurate scale will incur incorrect moving distance.

Fig. 9 shows the real scale error rate in four different sce-
narios. We noticed that in the first three scenarios, the error
rate is under 3 percent. While in shopping mall, due to the
complex NLOS environment, the real scale error reached
nearly 5 percent, which further leads to a degradation of
localization and navigation performance. The result also
reveals that using higher definition videos in complex envi-
ronments can effectively improve system performance.

6.2.3 Performance of 3D Semantic Map Construction

As discussed above, semantic 3D map construction, which
improves the quality of indoor navigation services, is a key
function of iSAT.

Fig. 7 shows the 3D semantic map in different scenarios
built by iSAT. To evaluate the effectiveness and accuracy of
the map construction function, we mainly focus on the abil-
ity of iSAT to correctly classify 3D points into their real-
world areas. As shown in Fig. 8, the average accuracy of
point cloud classification is 90.8 percent.

We notice that iSAT performs slightly worse in large-
scale scenarios (i.e. teaching building and shopping mall)
than it does in small-scale scenarios (i.e. library and office
building). The reason is that errors in location and map con-
struction accumulates as the user moves forward. Although
the relocation function can effectively alleviate this problem,
the accumulative errors cannot be completely avoided. Even
though, the accuracy in all these four scenarios are above 88
percent, which proves the effectiveness of 3D semantic map
construction. Unlike traditional methods to manually build
a 3D semantic map which is labor-intensive and requires
expensive devices, our method needs zero human start-up
effort and can work automatically.

6.3 Performance Evaluation

6.3.1 Overall Performance Comparison

Fig. 10a depicts the performance of the proposed iSAT as
well as three other comparative systems in indoor localiza-
tion scenarios. We observe that iSAT achieves the best per-
formance among all the systems. The average localization

TABLE 2
Comparision of Different Features Under Different Disparities

Name Time (ms) Matching Error (pixel) Location Error (m)

15� 30� 45� 15� 30� 45�

SIFT 195.09 7:30� 10�5 1:93� 10�2 1:05� 10�1 0.45 1.47 1.98
ORB 18.49 3:42� 10�4 6:44� 10�3 5:83� 10�2 0.52 1.26 1.54
BRISK 42.42 2:35� 10�4 4:82� 10�4 2:44� 10�3 0.48 0.66 1.01

Fig. 7. Semantic map constructed in different scenarios.

Fig. 8. Confusion matrices of 3D point cloud map semantic segmentation in different scenarios.
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accuracy of iSAT is 0.48 m which outperforms iVR by 29.1
percent, PHADE by 56.3 percent and exceeds ClickLoc by
71.2 percent. As for the performance of navigation, the aver-
age navigation success rate of iSAT is 90.5 percent, which
outperforms Pair-Navi by 2.8 percent and Travi-Navi by 5.7
percent.

We further evaluate the performance of iSAT and other
comparative systems in different experimental scenarios.
As shown in Fig. 10b, iSAT outperforms iVR, PHADE and
ClickLoc by at least 15, 35 and 50 percent respectively in all
experimental scenarios. As shown in Fig. 12, the navigation
success rate of iSAT exceeds Pair-Navi in three of four sce-
narios and outperforms Travi-Navi by at least 1.5 percent in
all experimental scenarios.

The results demonstrate that iSAT achieves remarkable
performance among state-of-the-art vision-based localiza-
tion and navigation systems. The reason for this perfor-
mance gain is two-fold: 1) Innate metric advantages of
vision-based methods. As far as we know, iSAT is the first
system that integrates mobile smartphone cameras and
ambient surveillance cameras. Compared with previous
radio-frequency-assisted or inertial-sensor-assisted systems
which suffer from the metric error of localization typically
averaging 3-5 m due to intrinsic defects such as fluctuation
of signal strength or inaccurate pedestrian dead-reckoning
(PDR), vision-based methods enjoy more robustness and
finer granularity. 2) Enhanced data fusion algorithm.
Although existing works also take heterogeneous data (e.g.
IMU, RF signal, images) as input, the fusing methods are
loosely coupled: localization results are directly generated
by individual systems independently, the localization bias
introduced by each module will be accumulated and further
reduce the performance [23]. In contrast, the data fusion
algorithm of iSAT is tightly coupled: iSAT does not treat
mobile vision-based and surveillance camera-based locali-
zation as two standalone sub-systems: the pixel-level infor-
mation of frames captured by above different cameras are
fused by leveraging BRISK feature points and multiview

geometry algorithms, which will reduce the bias introduced
by each sub-system and fusion procedure.

6.3.2 Performance in Different Areas

We evaluate the performance in four different experimental
scenarios as illustrated in Fig. 6, including a library, an
office building, a teaching building and a large shopping
mall. Fig. 11 shows the performance of iSAT in different
areas. We can see iSAT yields an average localization accu-
racy of 0.32 m in the library, 0.38 m in the office building,
0.47 m in the teaching building, and 0.76 m in the shopping
mall. The corresponding 95th percentile location errors in
these four scenarios are 0.69 m, 0.75 m, 0.98 m, and 1.71 m
respectively. The result shows iSAT achieves sub-meter
localization accuracy in all these four scenarios. As shown
in Fig. 12, iSAT achieves a navigation success rate of 93 per-
cent in the library, 92 percent in the office building, 90 per-
cent in the teaching building, while only 84 percent in the
shopping mall.

Most existing pattern-matching and data-driven
approaches rely on a domain-specific model, which means
when applying these systems to different scenarios, the dis-
tribution of objects will significantly reduce the system per-
formance. In contrast, iSAT is based on the general multi-
view geometry principle which is environment-irrelevant.
Once the surveillance camera and the mobile camera cap-
ture overlapping scenes (regardless of what the captured

Fig. 10. Overall performance comparison with state-of-the-art systems.

Fig. 11. Localization accuracy in different areas.

Fig. 12. Navigation success rate in different areas.

Fig. 9. Real scale error rate.
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scene is), iSAT will calculate their geometric relationship
and accurately get the user’s location.

The degradation of localization and navigation perfor-
mance in the shopping mall is mainly caused by a complex
and crowded indoor environment, where the occlusion of
POI inevitably occurs. Besides, the performance of visual
odometry also decreases in a high-dynamic indoor environ-
ment. Overall, iSAT outperforms compared systems in all of
these scenarios, proving its relatively high performance
regardless of the environmental difference.

6.3.3 Performance at Different Time Intervals

A major drawback of the P2P navigation systems is that
their performance degrades significantly as time flows.
Since the indoor environments are dynamically and gradu-
ally changing over time, these systems may fail to match
current video frames with the pre-recorded video frames
perfectly. Fortunately, the navigation service of iSAT is loca-
tion-based thus having no need for any pre-recorded data.
With the help of surveillance cameras, iSAT performs well
in any dynamic scenarios. We evaluated the navigation suc-
cess rate of iSAT and comparative systems at different time
intervals in teaching building. As shown in Fig. 13, the navi-
gation success rate of iSAT is almost time-invariant and sta-
ble at 90 percent. While the navigation success rate of Pair-
Navi and Travi-navi decline 3 and 5 percent respectively
after one week, and 10 and 13 percent respectively after two
weeks. The results demonstrate that the performance of
iSAT has robustness against time changes.

6.3.4 Performance at Different Times of the Day

We further test our system at different times of the day in
four experimental scenarios. We conduct experiments at 10
a.m. in the morning, 3 p.m. in the afternoon and 8 p.m. in the
evening. Fig. 14 shows that there is a slight difference
between morning and afternoon, while the localization
errors are relatively large at night. Especially in the office
building which undergoes the most drastic illumination
change among the four areas, the localization error increases
15.2 percent from 0.33 m to 0.38 m. Generally, in the office

building, most of the lights are usually turned down in the
evening, which leads to a reduction in the number of feature
points. So the image registration between surveillance cam-
era and mobile camera may not be accurate, which could
incur a slightly larger location error. For the same reason, the
navigation success rate of the iSAT at night also decline to 88
percent, about 2.5 percent lower than that in the daytime.

6.3.5 Impact of the Relative Location of Cameras and

POI

As mentioned in Section 2, POI triangulation is of vital
importance to the localization accuracy of iSAT. The result
of the triangulation is highly dependent on the relative loca-
tion of the mobile camera, surveillance camera and POI. For
ease of notion, we assume the surveillance cameras are
fixed, and test the localization performance with different
user-POI distance and different user-POI-surveillance cam-
era angle respectively.

We first set the angle to 15� and evaluate the localization
accuracy of iSAT at different distances. The experimental
results shown in Fig. 15 demonstrate that the average loca-
tion errors of iSAT are 0.48 m, 0.62 m, 0.86 m and 1.06 m at
distance 5 m, 10 m, 15 m and 20 m respectively. Longer dis-
tances result in higher localization biases since the depth
estimation deviation of the POI in triangulation is propor-
tional to the distance.

Then, we set the distance between the mobile camera and
POI to 5 m and test the localization accuracy of iSAT at dif-
ferent angles. Fig. 16 shows that the average location errors
of iSAT are 0.48 m, 0.66 m, 1.01m and 2.20 m at 15�, 30�, 45�

and 60� respectively, which indicates the average location
error scales with increasing disparity between frames cap-
tured from mobile and surveillance cameras. According to
the experimental results, iSAT achieves a satisfactory locali-
zation accuracy at the user-POI distance < 15 m and the
user-POI-surveillance camera angle < 45�.

6.3.6 Impact of Video Resolution and Frame Rate

iSAT is a vision-based system, which means its localization
and navigation performance is closely related to the quality

Fig. 13. Navigation success rate with different interval.

Fig. 14. Localization accuracy in different time.

Fig. 15. Distance to POI.

Fig. 16. Angle at POI.
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of video captured by mobile camera. Thus we conduct mul-
tiple experiments using videos of 4 combinations of resolu-
tion and frame detection rate to examine the impacts of two
main factors.

As shown in Fig. 17, the location error of iSAT using
1080P video decreases 28 percent comparing with that using
720P video. iSAT using 60fps video reduces 9 percent aver-
age location error comparing with iSAT using 30fps video.
Fig. 18 shows the navigation success rate of iSAT with dif-
ferent video quality. The average navigation success rate of
four types of videos are 95, 93, 88 and 85 percent respec-
tively. Generally speaking, videos with higher resolution
and frame detection rate enables higher localization accu-
racy and navigation success rate. Because high-resolution
video frames usually contain more feature points, which
can not only improve the registration accuracy between sur-
veillance camera and mobile camera, but also reduce the
error of inter-frame motion estimation during the naviga-
tion process. Video frames with a higher detection rate are
less prone to be blurred, which contributes to fewer errors
during the localization and navigation process.

6.3.7 Performance of Relocalization

As mentioned above, relocalization can reduce the probabil-
ity of deviation caused by accumulative errors. To demon-
strate the effectiveness of the relocalization function, we
evaluate the navigation success rate of iSAT with and with-
out relocalization. We select 4 paths of different lengths in
the teaching building and conduct experiments. Fig. 19
shows that navigation service with relocalization achieves a
relatively high success rate compared with that without
relocalization. iSAT with relocalization outperforms that
without relocalization by 1, 4, 8 and 12 percent in 4 paths
respectively. It can be concluded that the longer the path,
the more effective relocalization is. We summarize the rea-
son as that a relatively long path usually incurs a greater
accumulative errors, and relocalization can eliminate the
errors at one time, relocating the user to the correct path.
The result also shows that when the relocalization function
is disabled (means during the navigation process, no sur-
veillance cameras and POI will be used) the navigation

success rate in 50-meter-path still achieves over 93 percent,
which proves iSAT can still achieve a good navigation per-
formance only using one surveillance camera and POI at ini-
tial positioning stage.

6.3.8 System Latency

In iSAT, system end-to-end latency consists of communica-
tion latency and computation latency. The former depends
on the quality of wireless links and resolution of transmitted
frames; and the latter is introduced by the proposed locali-
zation and navigation algorithms. In this experiment, we
first evaluate the communication latency of iSAT. Further-
more, we compare the end-to-end latency of iSAT with iVR
and PHADE by using 720P videos.

As shown in the following Fig. 20, we choose three typical
network connections: Wi-Fi based LAN, Wi-Fi based WAN,
and 4G-LTE based WAN. Wi-Fi and 4G-LTE are two differ-
ent wireless access methods that are commonly used by
mobile devices. LAN connection means the client and server
are in the same local network. The result shows the average
communication latency is within 100 ms in any case.

After receiving the data, the server extracts BRISK fea-
ture points of each frame, which takes 23 ms for 720P frame
and 50 ms for 1080P frame on average. Then the POI detec-
tion module and VO module run in parallel, which takes
72 ms for 720P frame and 183 ms for 1080P frame, respec-
tively. Finally, iSAT estimates the pose of the mobile camera
and locates the user, which takes 28ms on average. As
shown in Fig. 21, the system latency of iSAT is about 0.16 s
and 0.23 s respectively using 720P and 1080P video. Com-
paring with iVR and PHADE, iSAT reduces system latency
by over 30 and 60 percent respectively.

In a nutshell, iSAT can achieve sub-meter or even deci-
meter level localization in no more than 0.5s, which meets
the real-time requirement for being applied as an indoor
localization system.

6.3.9 Application Power Consumption

To evaluate the power consumption of iSAT on the mobile
device, we run our application on different types of

Fig. 17. Localization accuracy under different resolution and fps.

Fig. 18. Navigation success rate under different resolution and fps.

Fig. 19. Effectiveness of relocalization.

Fig. 20. Communication latency.
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smartphones for dozens of times, and the power consump-
tion is recorded by the Android battery manager. On aver-
age, running our application on Galaxy S10 and Google
Pixel for 15 minutes incurs a power consumption of 4.7 and
5.6 percent respectively. Such a delightful result benefits
from the client-server design of iSAT, which means the
mobile device only need to record the video frames and
stream them to the server-side, and all the computational
intensive tasks (e.g., feature matching, coordinate transfor-
mation, etc.) are performed on the server.

7 RELATED WORK

In this section, we briefly summarize the most related works
in the following categories.

Mobile-Vision-Based Localization. Compared with indoor
localization techniques based on wireless or inertial infor-
mation, prior works based on SfM (Structure from
Motion) [36] take high-resolution images as input data thus
achieving sub-meter accuracy [37]. Overlay [38] combines
data retrieved from the camera and sensors of a smartphone
to construct a geometric representation of environments.
Apart from works mentioned above, ORB-SLAM [33], with
DBoW2[25] for place recognition and g2o [39] for optimiza-
tion achieves excellent performance. Among other tech-
nique advancements, works of semanticSLAM aims to
adopt semantic information into the framework [40], [41],
[42], while WiFiSLAM [43] relates RSS fingerprints, which is
further improved by GraphSLAM [44]. One significant limi-
tation of SLAM framework is the scale ambiguity, thus
requiring data from other sources such as IMU sensors and
WiFi signals. However, our solution exploits SLAM’s
advantages of efficiency and map generation, and by intro-
ducing surveillance camera’s real-world location, iSAT can
get the scale of the real world, thus doesn’t need other forms
of data. Besides, with the real position of 3D points known,
semantic information can be attached more easily, which
allows the system to offer more detailed instructions during
navigation. Furthermore, compared with SLAM-based navi-
gation systems[14] and image database methods[12], using
surveillance cameras means that even in time-variant sce-
narios, localization and navigation function can perform
well, since the frames captured by the surveillance camera
and the mobile camera are always time-synchronized.

Surveillance-Camera-Assisted Localization. Places where
indoor localization is needed generally provide extensive
coverage of surveillance cameras and routers. Given these
circumstances, pioneer works have integrated ambient
information to achieve higher accuracy. RAVEL [45] lever-
ages the fusion of visual data and radio data to realize high-
accuracy localization. TAR [34] combines visual patterns

from a surveillance camera with BLE signals to identify and
track users. Another work [46] makes use of IMU tracking
and video to realize stable pedestrian tracking. Similarly,
PHADE [22] combines a unique pattern of pedestrian trajec-
tories extracted from a surveillance camera and IMU data to
identify and track different users. The latest work of
iVR [23] explores the effect of fusing WiFi, IMU and visual
signals and outperforms previous systems in the aspect of
accuracy. Compared to prior works, our system doesn’t
need IMU data from the mobile device or any information
from the WiFi signal. Another significant limitation of the
above systems is that surveillance cameras can only work
within a limited LOS range. Instead, our system is the first
indoor localization system which exploits synchronized
images from surveillance cameras and mobile camera. The
VO module based on mobile camera ensures iSAT to navi-
gate users successfully even if they are not in any surveil-
lance cameras’ view. Therefore, a full-coverage navigation
service can be provided.

Easing Deployment. Existing indoor navigation systems
generally require a time-consuming site survey to obtain
prior information. Previous research has made efforts to rid
their systems of heavy human labor. [47] leverages WiFi fin-
gerprints and motion information to achieve automatic con-
struction of floorplan. Walkie-Markie [48] exploits user
trajectories and WiFi-Marks calculated from RSS trends to
label landmarks and reconstruct internal pathway maps.
Some pioneer works make use of visual messages to gain
information. Jigsaw [49] extracts geometric data and uses
SfM to help construct a 2D floorplan. iVR [23] relies on
images from a surveillance camera to construct the indoor
map, and hence doesn’t require the fingerprint database or
digital floorplan. The relevant works design effective meth-
ods to construct an indoor map.

Still, most of them require either manual measurement of
the external parameters (i.e. 3D position and 3D rotation) of
the surveillance camera, or a constructed large image data-
base which needs to be maintained and manually updated.
In contrast, our system leverages the combination of surveil-
lance and mobile camera to calculate projection, in which
the surveillance camera serves as a robust and real-time
image source. With floorplan which comes with the build-
ing itself, it takes little human effort to get the locations of
POI and surveillance camera. Our system is based on the
surveillance cameras that have already been deployed for
security purposes, which means minimal additional over-
head is required. Once deployed, our system doesn’t need
to be updated until the building structure changes.

8 CONCLUSION

In this paper, we present iSAT, an indoor navigation system
that enables public cameras to 1) locate users with absolute
locations on the floorplan, 2) tell users with semantic infor-
mation about the environment, and 3) guide users with nav-
igation instructions. We implement iSAT on commodity
smartphones and conduct experiments in 4 different scenar-
ios. Experiment results show that our system outperforms
existing systems in localization accuracy and navigation
success rate. We believe iSAT takes a promising step for-
wards to a practical navigation system. By leveraging iSAT,

Fig. 21. Different system latency.
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all areas with public cameras can upgrade to smart space
with visual navigation services.
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