

Enabling Sensorless Sensing with WiFi Radar

Zheng Yang / 杨铮 School of Software, Tsinghua University

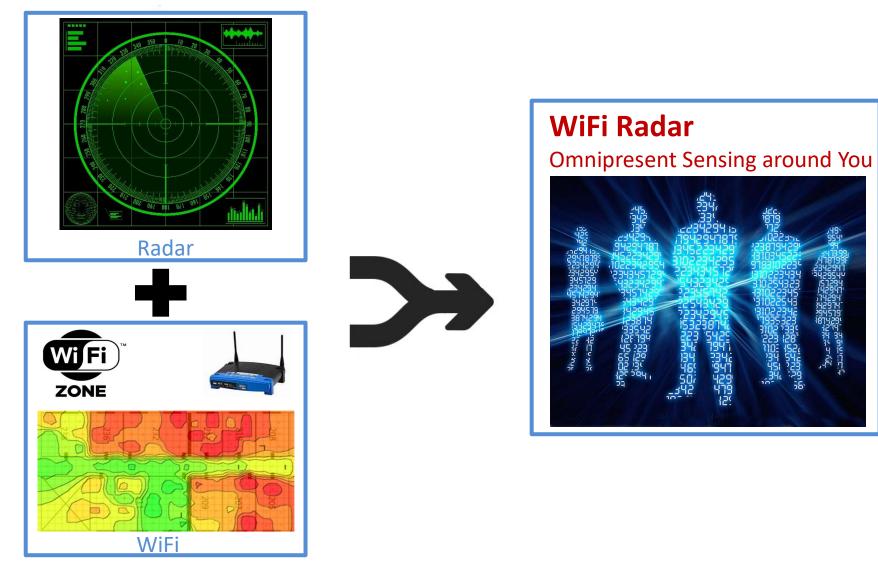
hmilyyz@gmail.com

http://tns.thss.tsinghua.edu.cn/~yangzheng/

Outline

Introduction

- Background
- Methods & Applications
- Conclusion


WiFi Signals Everywhere

Visualization of WiFi signals by Luis Hernan

WiFi as Radar?

WiFi Radar: Applications

WiFi Radar: Benefits

• Benefits:

- Wireless sensing without wires
- Sensorless sensing without dedicated sensors
- Contactless sensing without wearable sensors
- Through-wall & Privacy Preserving

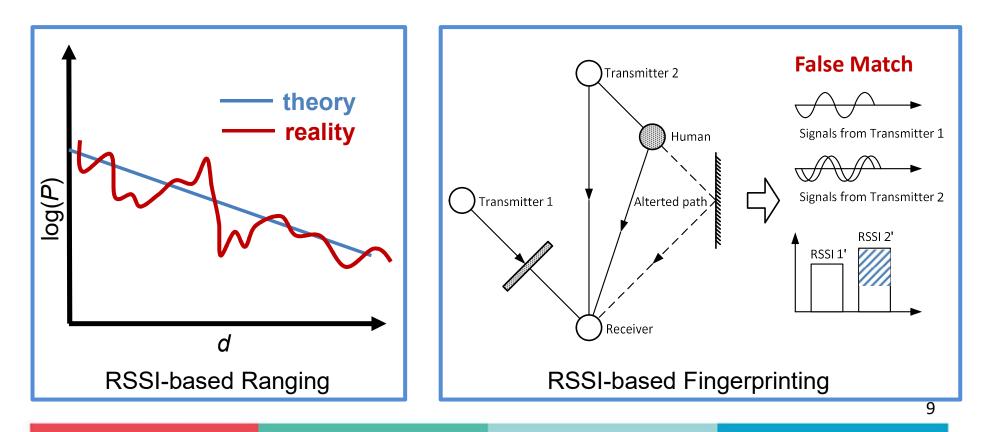
How to Enable Sensoreless Sensing with WiFi?

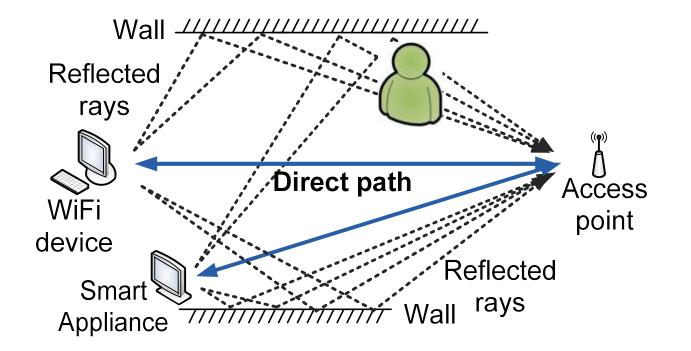
Outline

• Introduction

• Background

- Methods & Applications
- Conclusion

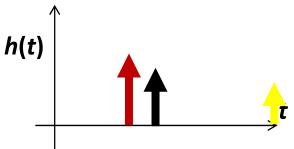

Detect Environment Dynamics


- Capture environment dynamics via the fluctuation of radio signal
 - Received radio signal strength (RSSI)
- Is RSSI a Good Signal Feature?
 - In theory, it is. However ...
 - In practice, sensing ability of RSSI is greatly weakened by rich multipath effects

Multipath: Enemy!

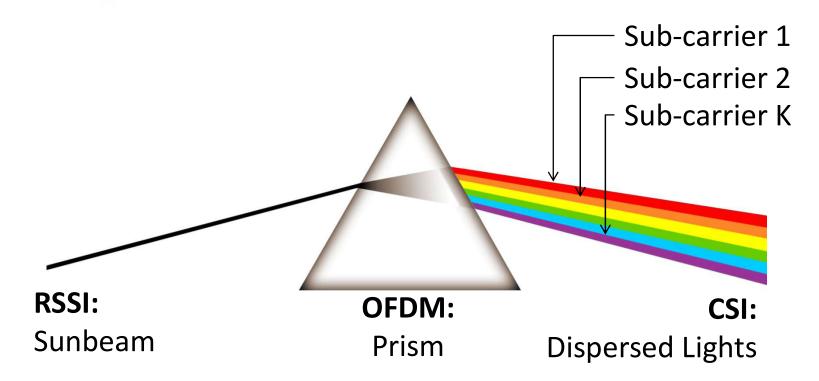
- Impacts of Multipath Effects:
 - Bound Accuracy of Ranging
 - Induce False Match in Fingerprinting

Multipath: Friend?!



Multipath Propagation Conveys Rich Environment Information

Characterizing Multipath


- Channel Impulse Response (CIR)
 - a set of attenuated, delayed impulse functions, depicting multipath

$$h(\tau) = \sum_{i=0}^{N-1} a_i \exp(-j\theta_i) \delta(\tau - \tau_i)$$

- Deriving Channel Response
 - VNA / SDR for precise measurement
 - Channel State Information (CSI): sampled version of channel response with OFDM at sub-carrier level
 - CSI on a single sub-carrier k: $H(f_k) = \|H(f_k)\| e^{j\sin(\angle H)}$

Channel State Information

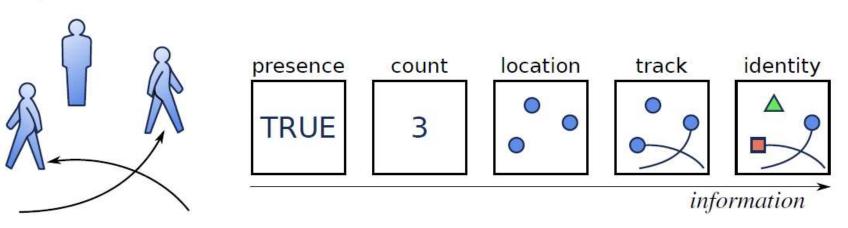
- Analogously, CSI is to RSS what a rainbow is to a sunbeam.
 - CSI separates signals of different wavelengths via OFDM
 - RSS only provides a single-valued amplitude of superposed paths.

CSI vs. RSSI

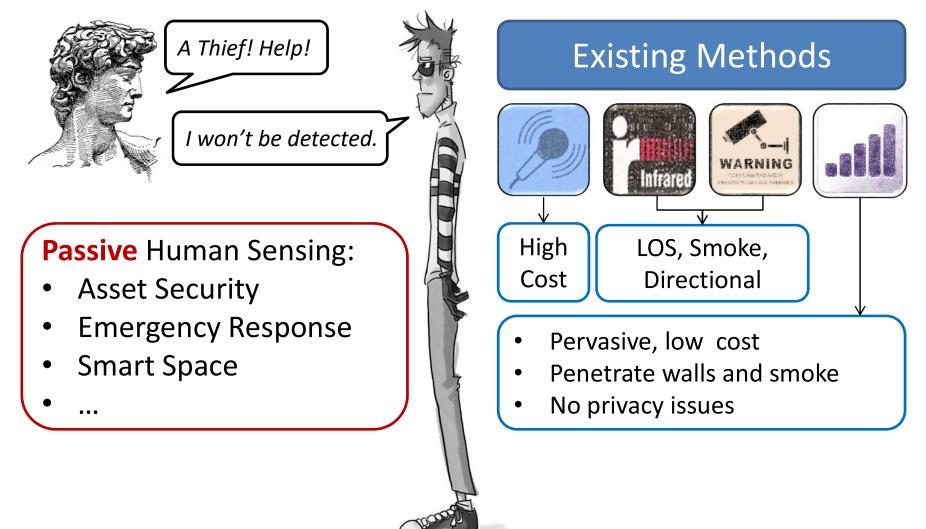
Category	RSSI	CSI
Layering	MAC layer	PHY layer
Time Resolution	Packet level	Multipath clusters
Frequency Resolution	N/A	Sub-carrier level
Stability	Low	High for CFR structure
Ubiquity	Handy access	Commercial Wi-Fi

How CSI Benefits WiFi Sensing?

Outline


- Introduction
- Background
- Method & Application
 - Sensing Coverage
 - Sensing Human with Dynamic Speeds
 - Sensing Static Human
 - Human Tracking
 - Human Interaction
- Conclusion

Passive Human Sensing


• Objective:

- Detect, Count, Localize, Track, Identify
- Emerging Trend:
 - Sense Humans **Passively**

ground truth

Passive Human Sensing

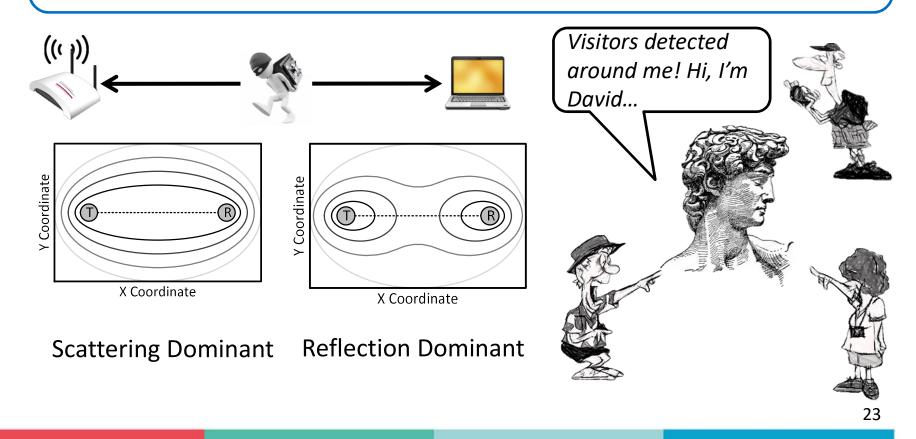
• Pressure Sensor

• Pressure Sensor

• Infrared Sensor

• Infrared Sensor

• Camera



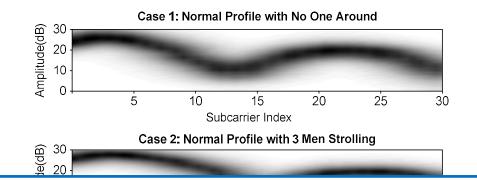
• Camera

Link-centric Coverage Shape

- Most monitoring units demonstrate a link-centric property
- **Disk-like** coverage is also desired in theory and application

Omnidirectional Coverage?

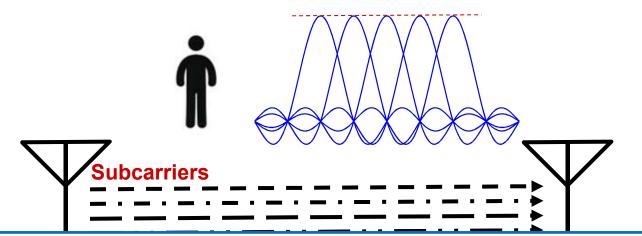
• Objective:


- Omnidirectional coverage under link-centric structure

Insight: Exploit Multipath to Blur the Link-centric Coverage

Fingerprinting Each Direction

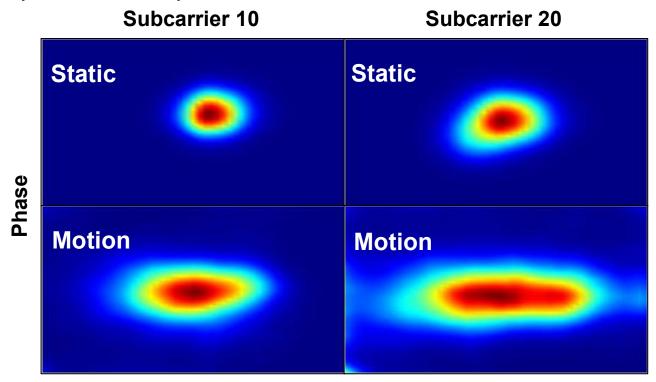
- Requirements on the Fingerprints:
 - Sensitive to Human Presence Nearby
 - Resistant to Background Dynamics Faraway


Stable under Dynamics Faraway Disperse with Nearby Human Motions

Subcarrier Index

Moving Target Detection

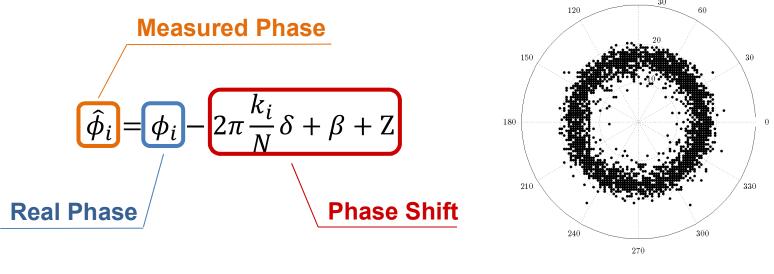
• Observation:


- Signal variance reflects channel changes caused by motion

Slow Motions May be Missed Due to Low Sensitivity

Coping with Dynamic Motion Speeds

• Rationale: motion brings about more dynamics in both amplitude and phase

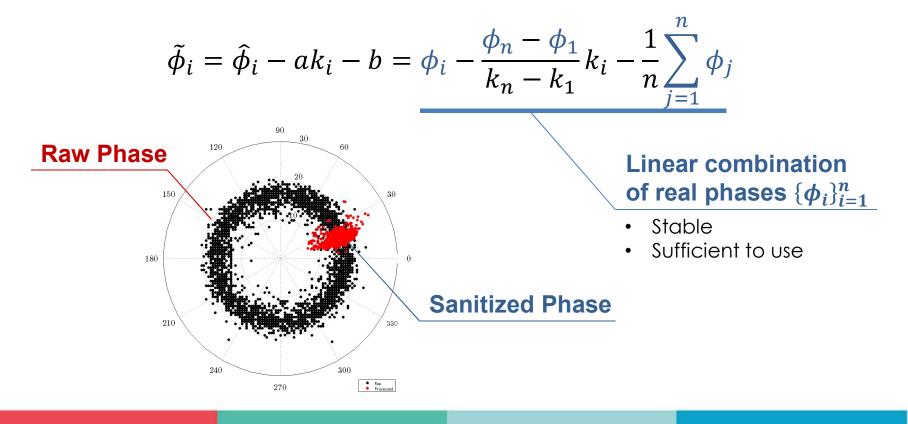


Amplitude

"PADS: Passive Detection of Moving Targets with Dynamic Speed using PHY Layer Information", IEEE ICPADS. 27

Phase Sanitization

Raw CSI phase is useless because Tx/Rx are not synchronized, introducing a random phase shift.



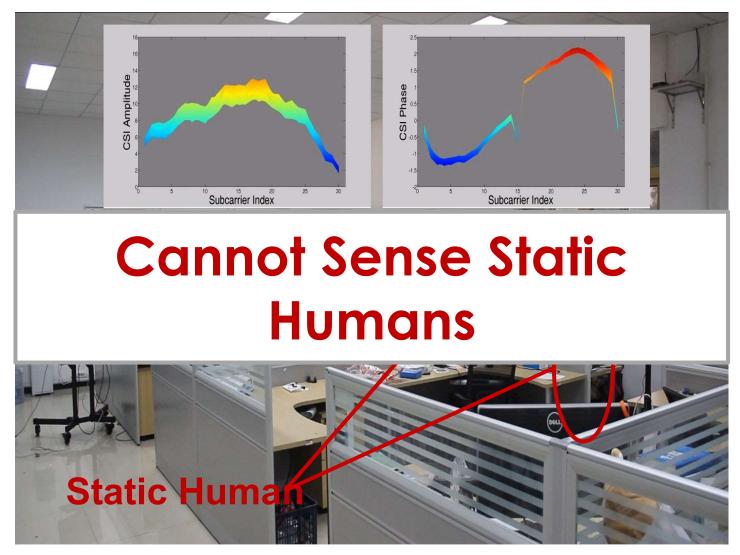
Phase relation for *i*th subcarrier

Raw phase distribution of *i*th subcarrier

Sanitization Result

• Solution: extract accurate phase-related information from raw CSI by dealing with asynchronous sender and receiver, asynchronous antennas, and noises.

Part 2: Sensing Human with Dynamic Speeds


Demo

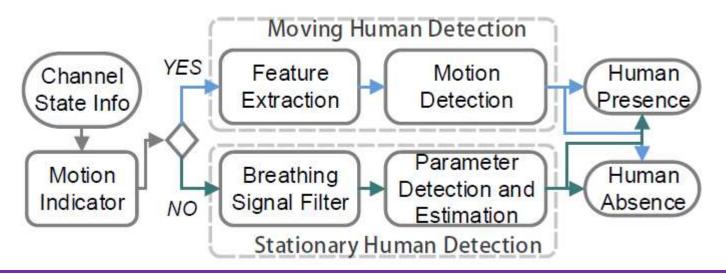
优酷:<u>http://v.youku.com/v_show/id_XODQ4MTY3MjY0.html</u> Youtube:<u>http://youtu.be/As5JexOeOYY</u>

Part 3: Sensing Static Human

Sensing Static Humans

"Non-invasive Detection of Moving and Stationary Human with WiFi", IEEE JSAC.

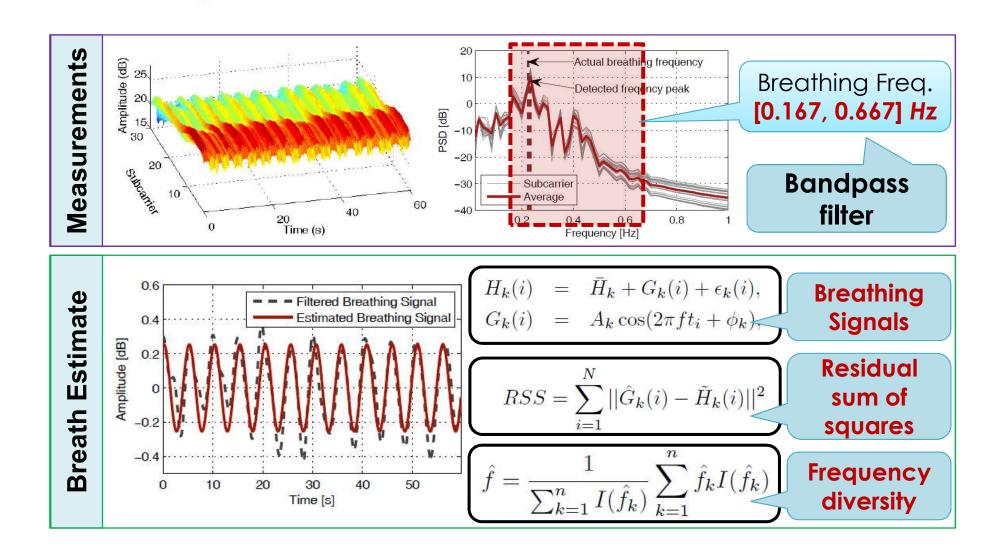
Part 3: Sensing Static Human


Do not Move, Yet Breathe!

Breathing Induces **Rhythmic** Chest Motions!

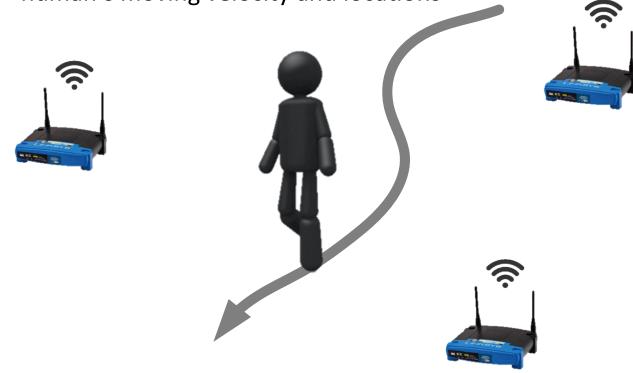
- Opportunity to detect a static person
 - > at least we breath periodically
 - breathing induced chest motion
- ≻ Goal
 - > Detect Static Humans via Breathing-induced Signals
 - A Unified Scheme for Detection of Moving and Stationary Humans

Design & Challenges

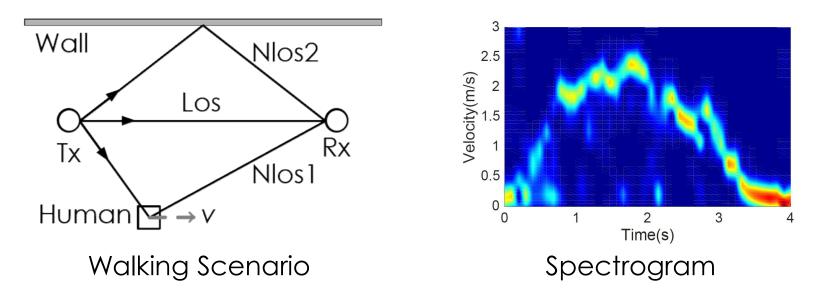

A unified framework for static & moving human detection (minute breathing-induced chest motion vs significant body motions)

Identify weak human breathing patterns from wireless signals with environmental noises

Detect static humans without fingerprinting

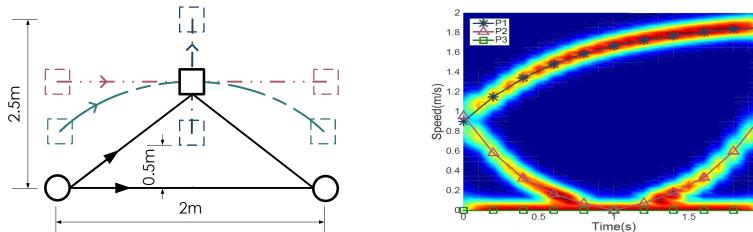

Part 3: Sensing Static Human

Static Human Detection


Problem Statement

- Passive tracking with Wi-Fi
 - Key tech.: Using COTS Wi-Fi devices to simultaneously estimate human's moving velocity and locations

Preliminary


• CARM Models interaction between CSI and motion.

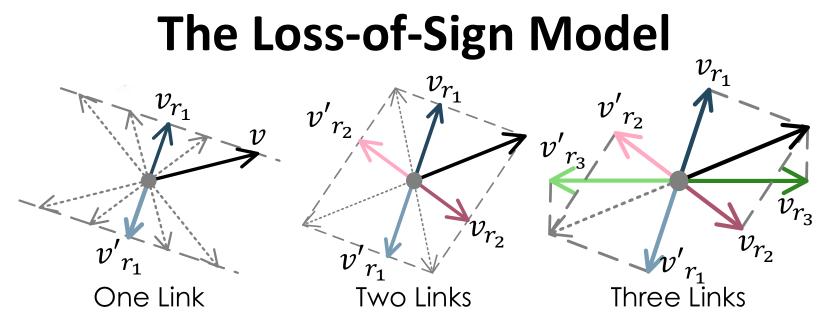
• CARM can extract the change rate of the length of the reflecting path

Challenge

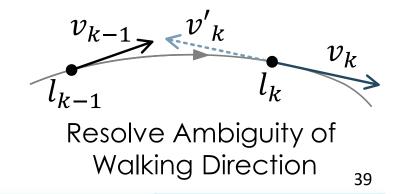
- Path length change rate != real moving velocity (we want)
 - Path length change rate only reflects partial velocity.

We introduce CSI-Mobility model.

The Single-Link Model

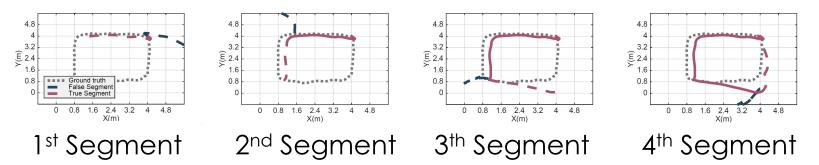

- From view of geometry,
 - Decompose: radial velocity v_r and tangential velocity v_t
 - v_r changes the path length and causes Doppler effect, while v_t not.
- Human Tx Rx

- From view of algebra,
 - Single link yields one equation.


Single-Link Model

Single Link is insufficient for tracking!

Part 4: Human Tracking



- 2 links result in 4 candidates; 3 links result in 2 candidates
- Two ambiguous solutions always exist, no matter how many links are added.
- We turn to leverage temporal dependency of human walking to figure out the only solution.

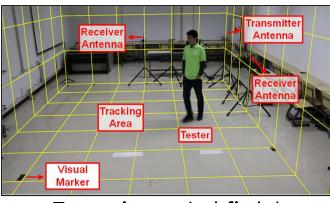
Implementation Issues

- Trace Refinement
 - Reinitialize tracking process at vulnerable moments.
 - The user takes a sharp turn.
 - The user walks slowly.

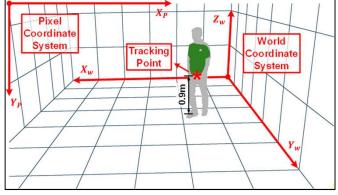
- Take extensive constraints within each segment.
 - Link-reflector distance.
 - Walking speed limits.
 - Turning angle.

Implementation Issues

- Tracking Initialization
 - Treat overall trace T as a function of initial location l_0 and velocities of segments $v_{0,1}, \ldots, v_{0,m}$.

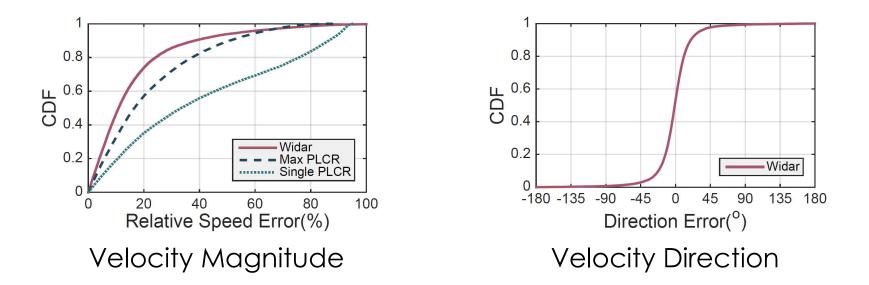

$$T_{\text{opt}} = T(\operatorname{argmin}_{l_0, v_{0,1}, \dots, v_{0,m}} \sum_{m=1}^{M} (\sum_{k=1}^{K_m} \operatorname{err}_{l,k} + \operatorname{err}_{v,k} + \lambda_m))$$

- Error terms
 - err_l Inconsistency between change rate of path length and solved velocity.
 - err_v Deviation of current velocity against to last velocity estimation.
 - λ Punishment from extensive constraints.


Part 4: Human Tracking

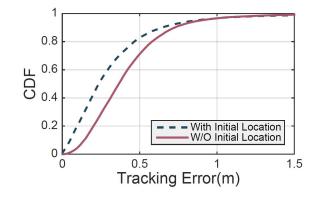
Experiment

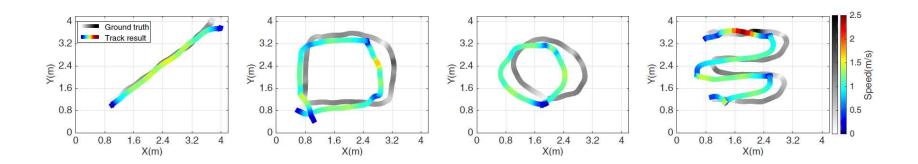
- Devices
 - 1 transmitter, 2 receivers.
 - 6 links in total.
 - 5.825GHz channel.
 - 2000 pkts/s.
- Setup
 - Deployment schemes.
 - Trace shapes.
 - Volunteers.
- Ground truth
 - Video-based tracking


Experimental field

Coordinate transformation

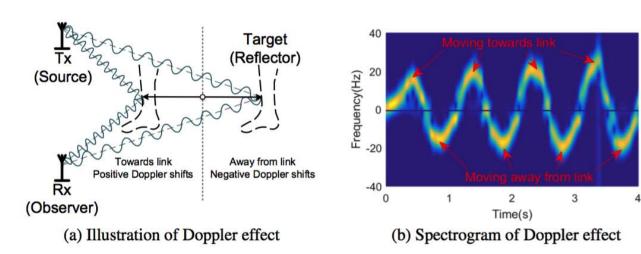
Part 4: Human Tracking

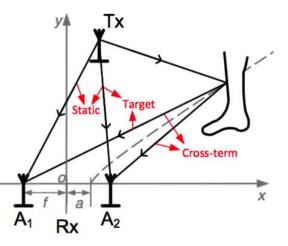

Performance on Velocity



- *Widar* achieves the highest estimation accuracy, with a median error of 11%, for velocity magnitude.
- *Widar* achieves a 80-percentile error of 20° for velocity direction.

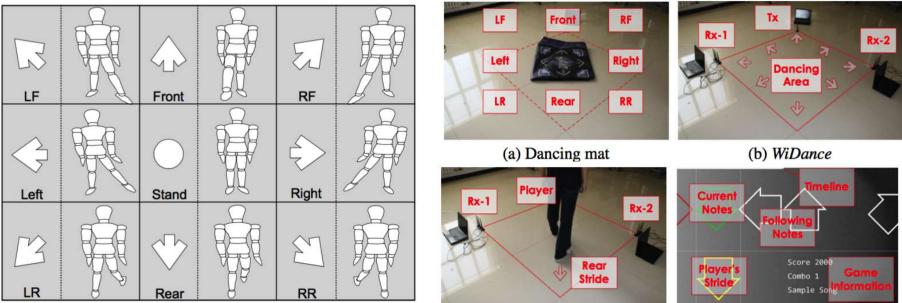
Performance on Location


- *Widar* achieves a median tracking error of 24cm and 36cm, with and without initial location, and 90percentile tracking error of 73cm.
- Decimeter Level Passive Tracking
- Tracking examples



Doppler Effects

- Complete information of motion-induced Doppler shifts with only commodity Wi-Fi
- Harness antenna diversity to carefully eliminate random phase shifts while retaining relevant Doppler shifts
- We further correlate Doppler shifts with motion directions,



(c) Doppler effect with multiple antennas

WiFi-based Dance Exergame

- Based on CSI-Mobility model, monitor motion and direction
- Design a Wi-Fi-based user interactive dance game
 - Previously, dance-pad is needed to record your action
 - Using WiFi instead of dance-pad to recognize behavior

(a) User action (b) Game GUI "Inferring Motion Direction using Commodity Wi-Fi for Interactive Exergames", ACM CHI 2017 46

Part 5: Human Interaction

WiDance

- 2 links woking on 5.825GHz, packet rate 1024Hz
- Overall accuracy of behavior recognition is 92% without learning, and 94% with HMM trained for 8 actions

Front	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Front	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
RF	- 0.0	88.5	11.5	0.0	0.0	0.0	0.0	0.0	RF	1.0	97.1	1.9	0.0	0.0	0.0	0.0	0.0
Right	- 0.0	3.2	95.6	1.3	0.0	0.0	0.0	0.0	Right	0.0	8.2	90.8	1.0	0.0	0.0	0.0	0.0
RR RR	0.0	0.0	1.8	86.8	11.4	0.0	0.0	0.0 -	RR RR	0.0	0.0	6.5	86.0	7.5	0.0	0.0	0.0
RR Rear	0.0	0.0	0.0	1.7	97.1	1.2	0.0	0.0	RR Rear	0.0	0.0	0.0	9.8	86.6	3.6	0.0	0.0
LR	- 0.0	0.0	0.0	0.0	10.4	86.4	3.2	0.0	LR	0.0	0.0	0.0	1.1	1.1	97.9	0.0	0.0
Left	0.6	0.0	0.0	0.0	0.0	4.4	90.5	4.4 -	Left	0.0	0.0	0.0	0.0	0.0	0.0	91.8	8.2
LF	0.6	0.0	0.0	0.0	0.0	0.0	14.9	84.5	LF	1.8	0.0	0.0	0.0	0.9	0.0	0.9	96.5
	Front	RF	Right	RR	Rear	LR	Left	LF		Front	RF	Right	RR	Rear	LR	Left	LF
	Predicted								Predicted								
	(a) WiDance (overall 92%)								(b) HMM-WiDance (overall 94%)								

Part 5: Human Interaction

Dancing in Wireless A Ubiquitous Interactive Exergame with Wi-Fi

Outline

- Introduction
- Background
- Methods & Applications
- Conclusion

Future Direction

• Training-free

- Environment-unrelated signal features
- Learning algorithm

• Killing application

- Security: Intruder detection
- Robust performance for large deployment
- Sensing multiple objects

Summary

CSI, the fine-grained channel response accessible on commodity WiFi devices, acts as an essential upgrade of RSSI.

WiFi-Radar enables WiFi to sense wirelessly, sensorlessly, and contactlessly.

Due to its worldwide deployment, WiFi can be seen as the world's largest sensor network.

WiFi-Radar, together with emerging PHY layer information, initializes the pulse on next-generation mobile computing.

Look ahead

以前在电视剧中总能看到这样的场景,当几个人做坏事 或者密谋做坏事的时候,一般会选择一个密室,关好门 拉上窗帘,有经验的还会检查桌子下面是否有窃听器, 完事后还要仪式性地念叨一句"天知地知,你知我知"。

今后,别忘了还要把Wi-Fi 关掉。

Reference

- Zheng Yang, et al., "From RSSI to CSI: Indoor Localization via Channel Response", ACM Computing Surveys, Volume 46, No. 2, 2014.
- Zimu Zhou, et al., "Sensorless Sensing with WiFi", Tsinghua Science and Technology, Vol. 20, No. 1, pp. 1–6, 2015.
- Chenshu Wu, Zheng Yang, et al., "Non-invasive Detection of Moving and Stationary Human with WiFi", IEEE JSAC.
- Qian et al, "PADS: Passive Detection of Moving Targets with Dynamic Speed using PHY Layer Information", IEEE ICPADS, 2014.
- Zimu Zhou, Zheng Yang, et al., "Omnidirectional Coverage for Device-free Passive Human Detection", IEEE Transactions on Parallel and Distributed Systems (TPDS), Volume 25, Issue 7, Pages 1819 – 1829, July 2014.
- Kun Qian, et. al., "Inferring Motion Direction using Commodity Wi-Fi for Interactive Exergames", ACM CHI 2017. (Best Paper Honorable Mention Award)
- Kun Qian, et. al., "Decimeter Level Passive Tracking with WiFi", HotWireless 2016.
- 杨铮、吴陈沭、刘云浩,《位置计算:无线网络定位与可定位性》,清华大学出版社,2014
- WiFi Radar Homepage: http://tns.thss.tsinghua.edu.cn/wifiradar/

WiFi雷达实验平台

- "WiFi雷达"实验平台包括微型 工控机、TNS-CSI Tool、Visual CSI软件等,可实时显示无线 信道状态信息(振幅与相 位),并能同步存储观测数 据,方便使用者观察和分析 环境变化对信道状态的影响。
- WiFi雷达主页: http://tns.thss.tsinghua.edu.cn /wifiradar/

Thanks! Q&A